14.352 – Física – Curvaturas no espaço Tempo (?)


gravidade tempo
É uma das principais consequências da teoria da relatividade geral, de acordo com a qual a gravidade é efeito ou consequência da geometria curva do espaço-tempo. Os corpos em um campo gravitacional seguem um caminho espacial curvo, mesmo que eles possam realmente estar se movendo como “linhas de mundo” possíveis “em linha reta” através do espaço-tempo curvo. É importante salientar que as linhas mais “retas” ou unindo dois pontos com o comprimento mais curto possível em um determinado espaço de tempo são chamadas de linhas geodésicas e são linhas de curvatura mínima.
As ideias básicas que levaram à noção de que o espaço físico é curvo e portanto não euclidiano se devem às muitas tentativas, ao longo de vários séculos, em demonstrar se o quinto postulado de Euclides podias ser derivado do restante dos axiomas da geometria euclidiana. Este postulado afirma que fixada uma reta e um ponto exterior a esta, existe uma e somente uma reta paralela à primeira que passe por tal ponto.

Essas tentativas culminaram com a constatação de Bolyai e Gauss de que este axioma ou postulado das paralelas pode ser contestado, e se podiam construir geometrias onde simplesmente o postulado é falso, dando lugar às geometria não euclidianas. Assim, além do espaço plano ou euclidiano, podemos construir outros espaços de curvatura constante como:
O espaço aberto hiperbólico de Bolyai-Lobachevski no qual existe não uma, senão infinitas retas paralelas a uma reta dada que passem por um ponto exterior prefixado.
O espaço fechado elíptico de Riemann no qual não existe nenhuma reta paralela exterior a outra dada que não se intersectem.
Um pouco mais
Desde o início da era espacial, há trinta anos, a imagem de astronautas flutuando sem peso em suas naves se tornou bastante familiar. Tanto que a maioria das pessoas já nem sequer se espanta diante desse estranho privilégio, geralmente alardeado por mágicos e faquires, mas na realidade nunca visto aqui na Terra. Para o senso comum, a levitação se explica pura e simplesmente pela ausência de gravidade. Mas não é nada disso: o astronauta flutua porque, na verdade, está caindo. Isso mesmo, caindo. Essa causa, mais intrigante ainda que a própria falta de peso do astronauta tem a ver com espaço, o tempo e o fato de que essas categorias são bem mais concretas na vida do Universo do que se costuma pensar.
Aparentadas entre si, formando o espaço-tempo, essas entidades são capazes de criar um relevo menos ou mais íngreme em pleno vácuo, em que os corpos, de certa forma, tendem sempre a escorregar. Nessa incrível geometria, quando um obstáculo qualquer impede os corpos de escorregar, surge então o peso, uma força que age sobre eles. Não é por outra razão que, na Terra, as pessoas têm a sensação do próprio peso. Já no caso dos astronautas, impulsionados pelos foguetes ladeira acima no espaço-tempo, graças à velocidade sua queda se transforma num perpétuo giro em volta da Terra.

Essas idéias todas parecem esdrúxulas, mas não são – o problema é que as pessoas ainda não estão acostumadas a elas. Só muito recentemente a ciência e a tecnologia começaram aos poucos a aproximar o homem comum de um Universo onde os fenômenos são bem diferentes daqueles que ocorrem na experiência cotidiana no mundo comparativamente estreito da superfície terrestre. Os relógios dos astronautas, por exemplo, já podem registrar as sutis alterações no ritmo do tempo, provocadas pelos vales e cordilheiras cósmicas. Acontece que o tempo passa mais lentamente onde a inclinação do espaço-tempo é mais acentuada. Para todos os efeitos práticos, a diferença ainda é desprezível em quase todos os casos em que é preciso ver as horas no espaço, mas à medida que cresce a exigência de exatidão nos afazeres humanos a variação tende a se tornar importante.

No movimento dos corpos, um cenário mais claro

Mesmo que assim não fosse, as novas idéias sobre o espaço e o tempo, formuladas pelo físico Albert Einstein na segunda década do século, deveriam merecer a maior atenção. Afinal, foi a partir delas que se chegou ao conceito de evolução do Universo, isto é, a sua origem em uma tremenda explosão, há cerca de 15 bilhões de anos, e a transformação final das estrelas nos abismos conhecidos pelo nome de buracos negros. Agora mesmo se supõe que existia um buraco negro por assim dizer às portas da Terra, entre as estrelas que formam a Galáxia da Via Láctea (veja o artigo “Fábrica de estrelas”, nesta edição). É possível até que todas as galáxias abriguem um personagem celeste desse tipo, constituído exclusivamente por uma fantástica ruptura no tecido do espaço-tempo.
O vasto cenário que se abre à aventura

Por que tudo cai na mesma velocidade?

do homem não é fácil de visualizar, mas se torna bem claro quando se manifesta no movimento dos corpos, seja uma estrela, um astronauta ou uma simples bola de tênis. Um exemplo extraordinário é a própria superfície da Terra, em que todos os corpos caem com a mesma velocidade, não importa se o que está caindo é uma pedra, um chumaço de algodão ou um gato. Se todos esses corpos caírem de uma altura de 10 metros, sua velocidade de choque, ou seja, medida no instante em que atingem o solo será sempre exatamente igual a 14 quilômetros por hora.
Como será que isso é possível, se há tanta diferença no tamanho, no peso e no material de que são feitos?
A resposta revolucionária da Física moderna é que todos eles escorregam em um mesmo tobogã, ou seja, fazem a mesma curva no espaço-tempo. Assim, a análise dos corpos em queda mostra que espaço e tempo não são meros símbolos, mas participantes ativos do mundo físico, onde empurram, freiam ou deixam rolar os objetos. Em uma palavra, determinam os seus movimentos.
É verdade que desde o século XVII se conhecia esse fato desconcertante, mas quase trezentos anos se passaram até que, em 1916, Einstein dissesse, pela primeira vez, que isso acontecia devido à curvatura do espaço-tempo.
A partir daí, ele escreveu a sua Teoria da Relatividade Geral. Esta, durante décadas, carregou a fama de genial, mas incompreensível.
Agora, quando começa a ganhar importância prática, vê-se, por exemplo, como é simples desenhar a trajetória de uma corriqueira bola de tênis nas rotas relativísticas.
Um ano-luz é igual à cerca de 10 trilhões de quilômetros. Da mesma maneira, quando uma bola de tênis sobe 10 metros em 1,4 segundos, pode-se dizer que ela percorreu no espaço-tempo a distancia de 420 mil quilômetros, resultado da multiplicação de 1,4 por 300 mil.
Hoje em dia se sabe que a própria esfera cósmica se move em constante expansão, de forma que, como no caso da sala, mesmo que estivessem imóveis umas em relação às outras, as estrelas estariam se deslocando junto com o Universo. Vale a pena acompanhar esse curioso deslocamento. Para tanto, é preciso entender que o Universo não é visto propriamente como uma esfera: ele constitui apenas a superfície da esfera, em cujo interior não existe nada. Exatamente como a casca de uma laranja sem os gomos dentro. Assim, quando se expande, a casca se torna cada vez maior e, ao contrário do que possa parecer, mais espessa.
O resultado é semelhante ao que acontece com dois pontos assinalados sobre um balão: à medida que este for inflado, eles ficarão cada vez mais longe um do outro. E isso realmente ocorre com as galáxias: eles estão constantemente se afastando entre si a medida que o Universo envelhece. Alguns cientistas chegam a especular que se pode associar a expansão cósmica ao próprio fluxo do tempo. Mas tudo indica que uma coisa nada tem a ver com a outra. O exemplo da sala e da esfera universal tem apenas o valor de uma analogia, de modo a dar uma ideia mais palpável do tempo, raciocinando em termos de movimento.
Mas, esse caso, o ideal é observar um dos curiosos fenômenos protagonizados pela luz: as suas mudanças de cor. Ao ser emitida por uma estrela, jorra em um raio azul, mas se torna vermelha para um observador nas proximidades. Esse fenômeno passa por várias etapas e acaba conduzindo à curvatura do espaço-tempo.
A primeira observação importante é que a cor é uma simples medida da quantidade de energia luminosa está concentrada no tempo, ou seja, a cor indica a energia que chega ao olho a cada momento. Somando agora os dois eventos, conclui-se que o tempo na superfície da estrela deve ser curto. De fato, a cada momento, jorra um grande pacote de energia num raio azul, mas o observador vê o pacote avermelhado.
Como o pacote é o mesmo, ou seja, não houve perda de energia no caminho, foi o tempo que encolheu.

Comportamento da luz é o dado mais importante

na superfície da estrela. Finalmente, na última etapa do processo, cabe perguntar por que o tempo muda de tamanho. A resposta de Einstein e que a grande massa da estrela esmaga o espaço-tempo em suas vizinhanças, mais ou menos como o peso de uma bola de aço amassa uma superfície de borracha. A dilatação do tempo devido à curvatura do espaço-tempo tem sido vista nas mais inesperadas circunstâncias, como nos pulsares, ou astros degenerados, como dizem os astrônomos, que surgem depois do colapso de grandes estrelas e se transformam numa espécie de gigantesco relógio cósmico.

Há cerca de cinco anos, de fato, os astrônomos se espantaram com um pulsar que gira 640 vezes por segundo em torno de si mesmo e, cada volta, emite um preciso sinal de rádio. É um pulso que se repete a cada período de 1,56 milésimo de segundo, mais preciso do que qualquer relógio atômico já construído. Mas a curvatura do espaço-tempo criada pelo Sol prejudica essa pontualidade, introduzindo um desvio de até 5 por cento no ritmo com que os pulsos de rádio são recebidos na Terra.
O desvio tanto pode apressar quanto atrasar o sinal de rádio, pois surge quando a Terra se aproxima ou se afasta do Sol, mudando, portanto de posição no espaço-tempo.
A menor distância é a curva
Nem sempre é possível caminhar em linha reta entre dois pontos – é o que impõem os espaços curvos, como, por exemplo, a superfície esférica da Terra. Por isso, a menor distância entre duas cidades como São Paulo e Tóquio é um arco de círculo. Enquanto isso, um avião percorre a menor distância entre dois pontos em um espaço plano, no qual vale a Geometria tradicional. É uma reta e não um arco de círculo. Até a época de Einstein, se pensava que a Geometria do Universo fosse plana, mas ele mostrou que essa idéia não podia ser afirmada arbitrariamente. Como no caso da superfície da Terra, pode haver obstáculos que imponham uma forma para o espaço. Einstein provou, de fato, que a Geometria do Universo é influenciada pela quantidade de matéria existente no espaço e no tempo – este, segundo a Relatividade, também deve ser incluído nessa geometria. No espaço-tempo, a menor distância entre dois pontos é dada por uma curva chamada geodésica. É uma linha que só pode ser desenhada em um diagrama. Qualquer corpo em queda, na verdade, está rolando sobre uma curva geodésica.

Até as crianças entendem

Quem tem dificuldade para visualizar o escorregadio mundo relativístico pode tomar lições com as crianças. Espontaneamente, aos 6 anos, elas começam a usar o conceito de velocidade para analisar o movimento – naturalmente, sem se dar conta disso. Essa operação mental é o ditame central da Teoria da Relatividade, toda construída com a ajuda da velocidade da luz. O próprio Einstein, em 1928, quis saber do grande psicólogo suíço Jean Piaget (1896-1980) se a noção de velocidade era anterior ou posterior à do tempo, no processo de formação de inteligência. Piaget, depois de uma pesquisa, respondeu que a velocidade vinha antes.
De fato, se uma criança vê dois bonecos lado a lado movendo-se com a mesma velocidade num certo percurso, não tem dúvida de que ambos levaram o mesmo tempo para fazer o trajeto. Mas, se um dos bonecos for mais veloz, a criança dirá que durante o seu movimento transcorreu mais tempo. “Não se trata de erro”, escreveu Piaget: a criança, para ele, tem consciência de que os dois bonecos partem e param ao mesmo tempo; acontece que o boneco mais rápida, num mesmo tempo, percorre uma distância maior, induzindo a criança a dizer que demorou mais – o que na realidade não ocorreu.
O essencial nesse caso, diz Piaget, é a noção de ultrapassagem – o fato de que os bonecos saem lado a lado, mas um deles termina na frente do outro. Para a criança, isso basta para analisar o movimento, dispensando a distância realmente percorrida e a duração do percurso. Essa conclusão animou alguns físicos franceses a abandonar a velha definição de velocidade, onde o espaço e o tempo são as intuições básicas. Partiram direto para uma definição ancorada na idéia de ultrapassagem e assim reescreveram a Relatividade de modo mais simples.

Um funil que jamais acaba

No buraco negro, o espaço-tempo é um abismo de inclinação infinita. Na ilustração, vê-se a trajetória de um raio de luz rumo a esse sorvedouro: as paredes do espaço-tempo constrangem o seu movimento em uma espiral cada vez mais afunilada. O círculo amarelo na boca do funil é o horizonte do buraco negro. Um raio de luz que apenas resvale nesse horizonte pode escapar do funil. Caso contrário, não haverá saída.

A bola percorre 420 mil km

O Universo de Einstein possui quatro dimensões: altura largura, profundidade e tempo. Certamente não é possível desenhá-lo numa folha. Mas é mais simples do que parece. A dimensão corresponde ao tempo pode ser obtida a partir de um movimento de uma bola de tênis, que pode alcançar 10 metros em 1,4 segundo. Nesse tempo a luz percorre 420 mil quilômetros, pois sua velocidade é de 300 mil quilômetros por segundo. Aquela é a distancia que a bola percorre no espaço-tempo para chegar ao ponto mais alto de sua trajetória no espaço tradicional. Combinando as duas coisas em um diagrama se obtém a trajetória da bola no espaço-tempo.

Interacción_de_la_gravedad

14.350 – Física – A Busca pelo Supercondutor


fig 1 spcd
Um século após a descoberta deste fascinante fenômeno, a supercondutividade continua sendo um campo de pesquisa atual e vem contribuindo de modo significativo para o desenvolvimento científico e tecnológico. Apesar de muitos desafios terem sido superados ao longo destes anos, dois permanecem notavelmente destacados: a) o desenvolvimento de uma teoria microscópica ab initio (de primeiros princípios) que seja capaz de explicar a supercondutividade em qualquer intervalo de temperatura e b) a obtenção de um material que seja supercondutor a temperatura ambiente ou em temperatura maior que a ambiente. Depois de 5 prêmios Nobel em Física terem sido concedidos a pesquisadores desta área, é possível conjeturar que mais serão entregues aos que superarem os desafios destacados acima. Apresentamos uma sucinta discussão concernente aos principais acontecimentos relacionados à supercondutividade: sua descoberta, os materiais, as teorias propostas, os protagonistas e os avanços tecnológicos. Em um universo ocupado quase que exclusivamente por físicos teóricos e experimentais, destacamos a pouco conhecida contribuição do físico-químico americano Linus Pauling, que propôs um modelo simples e eficiente para a descrição da supercondutividade baseado em sua teoria da ressonância não-sincronizada das ligações covalentes (RVB).
Em 2011, a física comemorou aniversário de 100 anos de um dos fenômenos mais intrigantes já descobertos: a supercondutividade. Mesmo depois de um século, este curioso fenômeno continua a despertar o interesse de vários pesquisadores. Considerado um evento quântico que se manifesta em escala macroscópica, a supercondutividade ainda é um campo de pesquisa atual que têm contribuído para o desenvolvimento científico e tecnológico. Neste cenário, alguns desafios ainda não foram superados, tais como: uma teoria unificada capaz de explicar sua ocorrência para diferentes tipos de materiais em qualquer intervalo de temperatura crítica (TC ) e a obtenção de um material que seja supercondutor em temperatura ambiente ou maior. As pesquisas atuais concentram-se em grande parte na descrição da dinâmica de vórtices (um aspecto extremamente relevante em aplicações). Já em relação aos novos materiais supercondutores recentemente descobertos, eles ainda não superam a temperatura crítica dos cupratos, os quais prosseguem como campeões da TC . Do ponto de vista teórico, nenhum avanço significativo recente pode ser equiparado ao advindo da teoria BCS, uma das mais admiráveis teorias do estado sólido. A despeito de tudo, aplicações da supercondutividade em medicina, indústria e pesquisas avançadas vêm sendo realizada com sucesso e a produtividade neste ramo é intensa. Um indicativo do quanto o campo da supercondutividade é produtivo pode ser visto no número de prêmios Nobel em Física que foram outorgados até o momento: cinco. Provavelmente outros serão dados em reconhecimento às futuras descobertas que certamente virão. Este trabalho descreve a evolução histórica da supercondutividade desde sua descoberta até os dias atuais e acrescenta como tópico para discussão a desconhecida contribuição de Linus Pauling: a teoria da ressonância não-sincronizada das ligações covalentes (RVB).
A descoberta da supercondutividade
Há 109 anos, em 1911, na universidade de Leiden (Holanda), Heike Kamerlingh Onnes, em seu laboratório, observou pela primeira vez um dos fenômenos mais surpreendentes que a natureza pode exibir: a supercondutividade. Poucos anos antes (em 1908), Onnes tinha liquefeito o hélio (também pela primeira vez), baseado no princípio do processo de Linde, onde o hélio gasoso era submetido a sucessivos ciclos de resfriamento unidos em ‘cascata’, usando, dentre outras substâncias, ar líquido, obtendo assim temperaturas inferiores a 4 K. Neste novo regime de temperatura, Onnes investigou o comportamento da resistência elétrica para vários metais. Algumas idéias da época sugeriam que haveria uma queda contínua da resistência, que se anularia a zero Kelvin. Outra perspectiva era que a resistência a zero Kelvin seria infinita, pois os elétrons responsáveis pela condução se ‘congelariam’. A despeito dessas propostas, Onnes observou um fato inesperado (em particular para o mercúrio). O mercúrio foi um dos metais selecionados por ser mais fácil de obtê-lo com elevado grau de pureza. Os demais metais investigados demonstraram uma resistividade residual, o que Onnes interpretou como a presença de impurezas. A queda abrupta da resistência do mercúrio em torno de 4,2 K intrigou Onnes (essa temperatura foi classificada como temperatura crítica -TC , abaixo da qual o sistema se en-contra no estado supercondutor devido à ocorrência de uma transição de fase). Tal comportamento era totalmente inesperado, dado o estado rudimentar das teorias da condutividade vigentes na época. Vale ressaltar que este fato foi observado apenas três anos depois dele liquefazer o hélio. “Por sua investigação das propriedades da matéria a baixas temperaturas a qual levou à produção de hélio líquido”, Onnes recebeu o prêmio Nobel de Física em 1913. Seus trabalhos pioneiros atraíram vários pesquisadores para a Holanda, transformando a universidade de Leiden em um dos centros de pesquisa em física mais prestigiados do mundo.
Uma explicação satisfatória para os fatos observados por Onnes só viria muitos anos depois com o advento da teoria BCS. Neste intervalo, alguns outros avanços foram obtidos como veremos a seguir.
Desde a descoberta de Onnes até 1933, nenhum desenvolvimento significativo foi alcançado no campo da supercondutividade. Metais e ligas supercondutoras foram sendo descobertas, mas sem grande impacto. Durante esse período acreditava-se que as previsões feitas sobre o comportamento magnético de um condutor perfeito eram verdadeiras para um supercondutor. Porém, em 1933, os alemães KarlWalther Meissner e Robert Ochsenfeld verificaram que as propriedades reais de um supercondutor não são equivalentes as de um condutor perfeito [8, 9]. Eles descobriram que a distribuição do campo magnético no interior de um supercondutor era sempre nulo, independente das condições iniciais (da história da magnetização). O fenômeno passou a ser conhecido e denominado como efeito Meissner. A Fig. 1 apresenta uma ilustração do efeito Meissner. As linhas de indução são expulsas espontaneamente do interior da amostra supercondutora, o que caracteriza um diamagnetismo perfeito. Uma vez que o sistema se encontra abaixo da TC, haverá a expulsão do campo magnético, quer ele tenha sido aplicado antes ou depois do resfriamento.
Após a descoberta do efeito Meissner, ficou claro que as propriedades magnéticas de um supercondutor não podiam ser compreendidas pela hipótese de um condutor normal com resistividade zero. A supercondutividade passou a ser interpretada como um novo estado da matéria, o estado supercondutor. Daí vem as designações ‘estado normal’ e ‘estado supercondutor’. Num condutor perfeito o fluxo magnético na amostra é constante, enquanto que no supercondutor é zero, caracterizando o efeito Meissner. O perfeito diamagnetismo apresentado por materiais supercondutores poderá ser aplicado futuramente na fabricação de trens levitados magneticamente e pesquisas neste sentido já se encontram em andamento. Uma descrição satisfatória do efeito Meissner só viria em 1935 com o trabalho dos irmãos London.

14.340 – O que são Neutrinos?


neutrinos gráfico
Trata-se de partículas subatômicas de massa infinitesimal e carga elétrica nula. Depois dos fótons, eles são o tipo de partícula mais abundante no universo.
Neutrinos são partículas neutras, ou seja, sem carga elétrica, extremamente pequenas e com massa tão insignificante que após sua descoberta acreditou-se que não possuíam massa. Devido a essas características, os neutrinos dificilmente interagem com a matéria. Isso os torna muito difícil de detectar.
Os Neutrinos foram previstos por Wolfigang Pauli, pois a energia liberada em certas reações era menor do a que teoria mostrava. Deveria então haver uma partícula neutra com a energia que faltava sendo liberada durante essas reações. Em 1956 os neutrinos foram finalmente detectados por Frederick Reines (1918-1998) e Clyde L. Cowan Jr (1919-1974), emitidos de um reator nuclear. Mas, como detectar um Neutrino? Para detectar um Neutrino são necessários enormes reservatórios de substâncias que produzam alguma reação detectável. No experimento de Clyde e Reines foi usado um grande tanque contendo uma solução aquosa de cloreto de cádmio. Quando os neutrinos vindos de um reator nuclear próximo reagissem com alguma partícula produziriam luz. Detectores especiais envolvendo o tanque captariam a fraca luminosidade produzida pelo choque.
Em outra experiência no ano 1968, Raymond Davis Jr. (1914-2006) e seus colaboradores decidiram detectar estes neutrinos colocando um tanque com 600 toneladas (378 000 litros) de percloroetileno (C2Cl4), no fundo de uma mina de ouro a 1500m de profundidade. Como aproximadamente um quarto dos átomos de cloro está no isótopo 37, ele calculou que dos 100 bilhões de neutrinos solares que atravessam a Terra por segundo, alguns ocasionalmente interagiriam com um átomo de cloro, transformando-o em um átomo de argônio. Como o argônio37 produzido é radiotivo, é possível isolar e detectar estes poucos átomos de argônio dos mais de 1030 (1 seguido de 30 zeros) átomos de cloro no tanque. Periodicamente o número de átomos de argônio no tanque seria medido, determinando o fluxo de neutrinos.

Com o desenvolvimento dos aceleradores, muitas partículas foram descobertas pelos físicos. Para organizar todo o conhecimento produzido foi criado o Modelo Padrão. Segundo ele existe um grupo formado de 6 partículas chamadas de léptons. Elas são: o elétron (e); o muon (m), mais pesado que o elétron; e o tau (t), ainda mais pesado que o muon. Esses três léptons são partículas eletricamente negativas. E, para cada uma dessas partículas, existe um neutrino correspondente: o neutrino do elétron (ne), o neutrino do muon (nm); e o neutrino do tau (nt), em ordem de peso.
Uma grande fonte de neutrinos próxima de nós é Sol, onde ocorrem violentas reações nucleares o tempo todo. A partir da comprovação da existência dos neutrinos muitos cientistas se concentram em pesquisar aqueles que eram provenientes da nossa estrela. Esse interesse se deve ao fato dos neutrinos poderem atravessar todo o núcleo solar e chegar até a Terra. Desta forma, o estudo dos neutrinos solares poderia revelar informações sobre o interior do próprio Sol. Esse tipo de pesquisa revelou coisas importantes sobre os próprios neutrinos: ao longo da viagem até a terra eles oscilam entre os três diferentes tipos o neutrino do elétron, o neutrino do muon, e o neutrino do tau; Como consequência, se essas oscilações fossem verdadeiras, o neutrino possuiria massa.
Ainda pairam algumas dúvidas sobre as propriedades dos neutrinos e as investigações sobre esta diminuta partícula podem aumentar nosso conhecimento sobre o Sol, as estrelas e próprio Universo.

14.339 – Big Bang é recriado em laboratório por acidente


Pesquisadores da Universidade da Flórida Central (EUA) dizem ter descoberto, acidentalmente, as condições necessárias para a explosão do Big Bang ocorrer.
A surpresa
O Big Bang é a teoria mais aceita sobre a origem do universo. Ainda assim, os cientistas não sabem explicar exatamente como essa explosão inicial foi possível, ou o que a teria desencadeado.
No novo estudo, os pesquisadores estavam testando métodos para produzir propulsão a jato hipersônica em laboratório quando notaram que uma chama passiva poderia acelerar e explodir sozinha.
“Exploramos essas reações supersônicas de propulsão e, como resultado, encontramos um mecanismo que parecia muito interessante. Quando começamos a nos aprofundar, percebemos que era relacionado a algo tão profundo quanto a origem do universo”, disse Kareem Ahmed, professor do Departamento de Engenharia Mecânica e Aeroespacial da Universidade, em um comunicado à imprensa.
Ao que tudo indica, tudo que é preciso é turbulência para que uma pequena chama passiva (como a de uma vela) acelere e exploda por conta própria.
O experimento
Para entender melhor a reação, a equipe de cientistas resolveu criar um pequeno tubo de apenas alguns centímetros que induz turbulência. Dentro dele, uma “chama simplificada” foi capaz de acelerar a cinco vezes a velocidade do som.
Durante o experimento, os pesquisadores observaram diversos “Pequenos Bangs”, ou seja, explosões que podem ser iguais – embora em menor escala – ao Big Bang.
Essa pode ser uma nova teoria sobre o que teria “precedido” a origem do universo, se é que algo a precedeu, uma questão ainda em aberto na ciência.
Além disso, as descobertas têm aplicações potenciais em viagens aéreas e espaciais.
Fonte: Science

14.325 – O Tubo de Raios Catódicos


tubo de raios catodicos
Um tubo de raios catódicos ou cinescópio (também conhecido pelo acrónimo CRT, derivado da expressão inglesa cathode ray tube) é um tipo de válvula termiônica contendo um ou mais canhões de elétrons e um ecrã fluorescente utilizado para ver imagens. Seu uso se dá principalmente em monitores de computadores e televisores (cinescópios de deflexão eletromagnética) e osciloscópios (cinescópios de deflexão eletrostática). Foi inventado por Karl Ferdinand Braun em 1897.
Foi em um tubo de raios catódicos que, em 1897, o físico J. J. Thomson verificou a existência do elétron.
As primeiras experiências com raios catódicos são creditadas a J. J. Thomson, físico inglês que, em seus três famosos experimentos, conseguiu observar a deflexão eletrostática, uma das funções fundamentais dos tubos de raios catódicos modernos. A primeira versão do tubo de raios catódicos foi inventada pelo físico alemão Ferdinand Braun em 1897, tendo ficado conhecida como tubo de Braun.
EM 1907, o cientista russo Boris Rosing usou um tubo de raios catódicos na extremidade receptora de um sinal experimental de vídeo para formar uma imagem. Ele conduziu o experimento para mostrar formas geométricas simples na tela. Foi a primeira vez em que a tecnologia de tubo de raios catódicos foi usada para o que agora conhecemos como televisão.
O primeiro tubo de raios catódicos a usar cátodos quentes foi desenvolvido por John B. Johnson e Harry Weiner Weinhart, da Western Electric, tendo se tornado um produto comercial em 1922.
O primeiro televisor comercializado com tubo de raios catódicos foi fabricado pela Telefunken, na Alemanha, em 1934.
A máscara de sombra, formada por uma chapa de aço com cerca de 150 micros de espessura e com cerca de 350 mil furos é conformada em uma fôrma convexa em prensas, lavada e passa por um processo de enegrecimento. Esta chapa é fixada em um anel metálico para dar rigidez e que é fixado à tela por molas.
Processamento de telas ou Flowcoating
A camada fotossensível (camada de fósforo) é aplicada na parte interna da tela usando um processo fotoquímico. O primeiro passo é um pré-tratamento da superfície seguido do recobrimento com uma suspensão de fósforo verde. Depois de seca, a máscara é inserida na tela e o conjunto é exposto a uma luz UV que reage na parte exposta pelos furos da máscara. Os raios de luz são emitidos de tal forma que as linhas de fósforo estejam no mesmo ponto que o feixe de elétrons colidirá. Então a máscara é removida da tela e a área não exposta à luz é lavada. Nas áreas que foi exposta, o fósforo adere à tela como resultado de uma reação fotossensível. Na sequência as outras duas cores (azul e vermelho) seguem no mesmo processo.
Para os tubos que utilizam a tecnologia de matriz, linhas de grafite são colocadas entre as linhas de fósforos antes do processo Flowcoating em um processo similar chamado de processo Matrix.
Toda a região da tela é coberta posteriormente com uma camada de alumínio, este alumínio conduz os elétrons e também reflete a luz emitida para trás (efeito espelho).
Em paralelo ao Processamento de Telas, a parte interna do cone de vidro foi recoberta com uma camada de material condutivo. Uma pasta de esmalte é aplicada à borda do cone que após o forno se funde com a tela. A partir do forno o cone e a combinação tela/máscara, incluindo o cone metálico que serve de blindagem magnética, são fundidos no esmalte em alta temperatura.
O canhão eletrônico é inserido e selado no pescoço do cone, o vácuo é formado no interior do bulbo, o qual em seguida é fechado. Neste momento o bulbo se torna um tubo. Um “getter” (elemento químico com alta capacidade de combinação com gases não inertes), montado em uma fase anterior do processo, é evaporado por meio de aquecimento com alta frequência, para que se combine com possíveis átomos residuais de gases, através de reações químicas.
A parte externa do cone do cinescópio é recoberta por uma camada condutiva e uma cinta metálica é colocada na borda do painel através de um processo que envolve o aquecimento da cinta, a sua aplicação à borda do painel, seu resfriamento e consequente contração, para proteger o tubo contra possíveis riscos de implosão.

Matching
No Processo de Matching, uma bobina defletora é “casada” ao pescoço do cinescópio até o cone. Após várias medições e operações de acabamento, a defletora é ajustada para garantir uma distribuição uniforme e equalizada, por toda a tela, dos feixes eletrônicos vermelho, verde e azul. Esta operação é chamada “matching”. A defletora é então fixada na sua posição definitiva.
Descarte e reciclagem
Alguns cinescópios, dependendo do modelo e fabricante podem possuir metais nobres e até valiosos, tal como paládio, platina e eventualmente ouro, além de terras raras, algumas delas inclusive com pequeno potencial radioativo. Miligramas ou mesmo gramas desses metais e terras raras podem ser encontrados nos catodos e nas grades de difusão ou máscaras.
Dependendo de estudos de viabilidade, a extração desses metais pode compensar o custo de tratamento do descarte e da reciclagem, como já ocorre com os chips recobertos por filmes de ouro e entre outros, determinados conectores e soquetes utilizados em placas de circuito impresso, contatos de relés e etc.
Existem ainda alguns tubos de altíssima luminosidade que podem, apesar de não ser absolutamente certo isso – por estar entre os segredos de fabricação (vide referências) – conter diminutas quantidades de material radioativo pesado, tal como o tório, utilizado no endurecimento e aumento de resistência ao calor dos componentes do canhão eletrônico, tornando o negócio de reciclagem no mínimo desaconselhável para leigos e no pior caso exigindo inclusive disposição especial em áreas especialmente preparadas para recebê-los, para evitar graves contaminações, possivelmente cumulativas, no meio ambiente.
Lembrando que, ainda hoje no Brasil e em outros países, dispositivos mais simples tecnologicamente, mas submetidos a grande calor durante a operação, tal como “camisas de lampião”, são banhadas em material radioativo para permitir às cerdas das mesmas atingirem altas temperaturas sem romperem-se facilmente – o mesmo principio de tratamento por tório, costumava ser utilizado nos cátodos de alguns cinescópios.
Já os televisores mais antigos, aqueles com válvulas termiônicas, contêm algumas delas com cátodos compostos com terras raras, porém em diminutas quantidades. Apesar de encontrarem-se diversas dessas válvulas eletrônicas com informações relativas ao uso de terras raras radioativas nos cátodos, não se sabe exatamente se possuem ou não radioatividade inerente suficiente para causar danos, porém nos recicladores o contato constante com esses materiais poderá ser mais um fator para que não sejam reciclados em ambientes não controlados.
O que torna o assunto da reciclagem de componentes eletrônicos e válvulas termiônicas algo um tanto delicado e que exigiria sempre a presença de um técnico especializado para avaliar o impacto ao meio ambiente e para realizar o descarte seguro desses componentes.
Aparelhos antigos podem conter maior quantidade desses componentes.
Seria irresponsável dizer às pessoas que simplesmente os atirem ao lixo, mas também é irresponsável dizer que leigos poderiam cuidar desse assunto – mesmo descartando-os em Ecopontos como os muitos mantidos pela prefeitura em grandes cidades de São Paulo.

oscilloscope

14.324 – O Ciclotron


ciclotron-de-lawrence
É um equipamento no qual um feixe de partículas sofre a ação de um campo elétrico com uma frequência alta e constante e um campo magnético perpendicular estático. Foi inventado em 1929 por Ernest Lawrence que o usou em experimentos com partículas com 1 MeV (Um Mega elétron-Volt).
O cíclotron possui dois eletrodos ocos que têm a forma de uma letra D. Sua montagem é numa câmara de vácuo entre os polos de um eletromagneto. Os prótons, dêuterons (Núcleo de um átomo de deutério, constituído por um próton e um nêutron), começam a se locomover no interior dos eletrodos em forma de D.
No início da locomoção, é injetada uma diferença de potencial alternada de alta frequência e potência nos eletrodos (“Dês”) cuja frequência de ressonância é próxima à da circulação iônica, produzindo assim saltos de aumento de velocidade. Cada vez que as partículas passam de um elétrodo para o outro subsequente estas adquirem uma trajetória em forma de espiral.
Em seguida ocorre com as partículas uma trajetória em forma hipóide, ou de semicírculos, cujos raios são crescentes havendo então uma perda do foco do feixe.
para que núcleos estáveis de elementos naturais se transformem em núcleos de outros elementos químicos, é necessário que ocorra um bombardeamento desse núcleo estável com determinadas partículas.

Entre essas partículas-projéteis, os nêutrons se mostram muito eficientes, pois como eles não possuem carga elétrica, eles não sofrem influência do núcleo, que é positivo. Assim, os nêutrons não sofrem ação dos campos elétricos dos átomos e seguem seu trajeto sem perder energia.

No entanto, as outras partículas (alfa, próton, dêuteron) possuem carga positiva, igual à do núcleo. Portanto, ocorre uma repulsão e quanto maior o número atômico do elemento (quanto maior o número de prótons), maior será a carga positiva e maior será a força de repulsão.

Para vencer essa repulsão, as partículas-projéteis precisam ser aceleradas a velocidades muito altas. Isso é feito no acelerador de partículas.
Essas partículas são obtidas por meio da emissão natural de elementos radioativos e depois da sua aceleração no aparelho. Os principais tipos de aceleradores são: Gerador de van de Graaf, Acelerador linear e Cíclotron de Lawrence.

Cíclotron de Lawrence: a seguir vemos a figura de Ernest O. Lawrence e, no canto inferior direito, vemos o primeiro acelerador de partículas (cíclotron).
O nome cíclotron significa “canhão circular”, pois ele é formado por duas partes na forma de D, que são eletrodos ocos, separados por um espaço intermediário. Dessa forma, juntos parecem uma circunferência.

Seu funcionamento ocorre da seguinte maneira: quando uma partícula é lançada no espaço entre os eletrodos, ela é alternadamente atraída por um e repelida pelo outro, pois eles são alimentados por uma corrente alternada de alta frequência que faz com que eles fiquem ora carregados positivamente ora negativamente. Com isso, a trajetória circular da partícula é acelerada cada vez mais, transformando-se em trajetória em espiral, até que ela é lançada por uma fenda em direção ao núcleo-alvo.
Gerador de van de Graaf: o processo de funcionamento desse equipamento é chamado de “efeito de ponta”. As pontas, que são os pentes metálicos, estão ligadas a uma cúpula metálica com uma correia de borracha isolante que serve de meio para os elétrons, que são retirados do pente 1 e capturados pelo pente 2.
Com isso, a cúpula vai se carregando positivamente e seu campo elétrico torna-se extraordináriamente alto. As pontas ficam ao redor de uma saliência pontiaguda de um corpo condutor. Os íons positivos estão na fonte do tubo e com a força do campo elétrico eles são, então, repelidos violentamente na direção do alvo.

ciclotron
Acelerador linear: as partículas passam pelo interior de cilindros ocos sucessivos, que são alimentados por uma corrente elétrica de alta voltagem e frequência muito elevadas. Por exemplo, quando a fonte emite partículas com carga positiva, o primeiro cilindro torna-se fortemente carregado negativamente, atraíndo as partículas. Quando elas estiverem na metade do cilindro, ele torna-se positivo e elas são repelidas para o segundo cilindro que está carregado negativamente. E isso continua de modo sucessivo, até que as partículas adquiram a aceleração desejada.
O maior acelerador de partículas do mundo é o LHC (Large Hadron Collider), situado em Genebra, Suíça.
Por meio do uso desses aceleradores, já foi possível produzir vários elementos transurânicos, isto é, com número atômico maior que o do urânio (Z > 92), em laboratório. Entre eles estão o netúnio (Np), o plutônio (Pu), o amerício (Am), o cúrio (Cm), o berquélio (Bk), o califórnio (Cf), o einstênio (Es) e o férmio (Fm).

14.323-Física – O que são as Partículas Alfa?


pa3
A emissão alfa, desintegração alfa ou decaimento alfa é uma forma de decaimento radioativo que ocorre quando um núcleo atômico instável emite uma partícula alfa transformando-se em outro núcleo atômico com número atômico duas unidades menor e número de massa 4 unidades menor. A emissão alfa, portanto, é composta da mesma estrutura de núcleos do átomo de hélio. Uma emissão alfa é igual a um núcleo de hélio, que contém em seu interior dois prótons e dois nêutrons. A diferença entre a emissão alfa e o átomo de hélio é que na emissão alfa os dois elétrons da eletrosfera do átomo de hélio são retirados. Portanto, a partícula alfa tem carga positiva +2 (em unidades atômicas de carga) e 4 unidades de massa atómica.
Em 1896, o físico francês Antoine Henri Becquerel, em seus estudos sobre substâncias fosforescentes, verificou que compostos de urânio, causavam manchas escuras em chapas fotográficas, e mais tarde pode evidenciar que a radiação emitida pelo composto de urânio não era devida ao fenômeno de fosforescência e sim devido a radiação invisível emitida pelo composto de urânio, ou seja, o composto de urânio tinha uma atividade própria para emitir “raios” invisíveis. E a partir de 1898, o estudo da radioatividade começou realmente a se desenvolver e outros elementos radioativos foram descobertos, inclusive o rádio, de onde veio o nome “radioativo”.
Comprovou-se que um núcleo muito energético, por ter excesso de partículas ou de carga, tende a estabilizar-se, emitindo algumas partículas.
Ao desintegrar-se, os átomos dos elementos radioativos emitem energia na forma de radiação. A descoberta da radiação trouxe o conhecimento da existência das partículas subatômicas: os prótons e nêutrons (que compõem o núcleo do átomo) e os elétrons que se movimentam a altas velocidades.
As partículas {\displaystyle \alpha }\alpha são núcleos de hélio e têm uma interação forte com a matéria, sendo rapidamente absorvidas.
A partícula {\displaystyle \alpha }\alpha escapa do núcleo com uma maior frequência do que outros núcleos menores, como o deutério, devido a sua energia de ligação ({\displaystyle \scriptstyle E_{\alpha }\approx 28MeV}{\displaystyle \scriptstyle E_{\alpha }\approx 28MeV}, ou {\displaystyle \scriptstyle 7MeV}{\displaystyle \scriptstyle 7MeV} por cada núcleo), comparando-se com o dêuteron, {\displaystyle \scriptstyle Ed\approx 2MeV}{\displaystyle \scriptstyle Ed\approx 2MeV}. O tunelamento quântico é capaz de explicar este fenômeno
As partículas alfa apresentam grande poder de ionização devido a sua carga. No entanto, seu poder de penetração é inferior ao da partícula beta, dos raios-X e dos raios gama.

particulas-alfa2
Na altura em que foi descoberta a emissão do rádio 226 (1898), por Marie Curie e Pierre Curie, chamou-se ao fenómeno radioactividade {\displaystyle \alpha }\alpha ou emissão {\displaystyle \alpha }\alpha.
Às partículas emitidas deu-se o nome de partículas {\displaystyle \alpha }\alpha apenas por ser a primeira letra do alfabeto grego.
Posteriormente, verificou-se que essas partículas eram um núcleo de hélio, formado por 2 prótons e 2 nêutrons. As partículas {\displaystyle \alpha }\alpha emitidas apresentam energias bem definidas e podem ser utilizadas para caracterizar o núcleo de onde provêm.

particula alfa

14.322 – Instituições Científicas – Laboratório Cavendish


laboratory-physical-chemistry-university-155573051
Pertencem ao departamento de física da Universidade de Cambridge. Fazem parte da escola de Ciências Físicas e foram construídos em 1873 como laboratórios de formação de estudantes. No início os laboratórios estavam instalados no centro de Cambridge, porém, por falta de espaço foram deslocados na década de 70 para a zona ocidental de Cambridge.
O departamento recebeu seu nome de Henry Cavendish, um famoso cientista e membro de um ramo da família Cavendish relacionada com os duques de Devonshire. Um dos membros desta família, William Cavendish, 7º Duque de Devonshire, foi reitor da Universidade e, deu o nome do seu parente ao laboratório depois de o fundar e doar fundos para a sua construção, tendo ainda nomeado a James Maxwell como primeiro diretor.
Até agora 28 cientistas dos Laboratórios Cavendish já foram laureados com prêmio Nobel.

Lord Rayleigh (Física, 1904)
Sir J.J. Thomson (Física, 1906)
Lord Ernest Rutherford (Química, 1908)
Sir Lawrence Bragg (Física, 1915)
Charles Barkla (Física, 1917)
Francis Aston (Química, 1922)
Charles Wilson (Física, 1927)
Arthur Compton (Física, 1927)
Sir Owen Richardson (Física, 1928)
Sir James Chadwick (Física, 1935)
Sir George Thomson (Física, 1937)
Sir Edward Appleton (Física, 1947)
Lord Patrick Blackett (Física, 1948)
Sir John Cockcroft (Física, 1951)
Ernest Walton (Física, 1951)
Francis Crick (Medicina, 1962)
James Watson (Medicine, 1962)
Max Perutz (Química, 1962)
Sir John Kendrew (Química, 1962)
Dorothy Hodgkin (Química, 1964)
Brian Josephson (Física, 1973)
Sir Martin Ryle (Física, 1974)
Anthony Hewish (Física, 1974)
Sir Nevill Mott (Física, 1977)
Philip Anderson (Física, 1977)
Pjotr Kapitsa (Física, 1978)
Allan Cormack (Medicina, 1979)
Sir Aaron Klug (Química, 1982)
Norman Ramsey (Física, 1989)
Os Laboratórios Cavendish tem tido uma importante influência no desenvolvimento da Biologia, sobretudo, graças a aplicação da cristalografia de raios X no estudo das estruturas da biomoléculas como, por exemplo, o DNA.
Outras áreas nas quais os laboratórios tem sido influentes desde 1950 são as seguintes:
Supercondutividade ( Brian Pippard );
Microscopia eletrônica de alta voltagem;
Radioastronomia ( Martin Ryle e Antony Hewish) com radiotelescópios

Um Pouco Mais
Endereço: Madingley Road. Cambridge CB3 0HE
Tel.: +44 1223 337200
Museu: www-outreach.phy.cam.ac.uk/camphy – A história do laboratório, suas descobertas e a biografia de cientistas como Rutherford e Thomson. Há um tour virtual do museu, com equipamentos como o tubo de vidro com que Thomson descobriu o elétron e o acelerador de partículas utilizado na primeira divisão artificial completa do átomo.
Biblioteca Rayleigh: http://www.phy.cam.ac.uk/cavendish/library – Um dos principais acervos de física no Reino Unido. Tem 18 mil volumes e livros históricos, como originais de James Clerk Maxwell (1831-1879), o primeiro diretor de Cavendish, famoso por formular leis para o eletromagnetismo e a termodinâmica
Mark Krebs, departamento de Biofísica
Do DNA às Proteínas

Em 1953, Francis Crick entra no Eagle, pub próximo de Cavendish, e grita: “Descobrimos o segredo da vida”. Era o anúncio inédito de uma das maiores conquistas da história da ciência: a descoberta por Crick e James Watson, ambos de Cavendish, da estrutura do DNA, estrutura que guarda a informação genética em todos os seres vivos. Hoje, o químico Mark Krebs vai de bicicleta a Cavendish para pesquisar a mesma área. O desafio agora é descobrir como se formam as proteínas.
Como sua pesquisa pode ajudar a medicina?
R:Tentamos entender por que as proteínas se agregam quando sujeitas a condições como o aumento da temperatura. A insulina, por exemplo, forma uma estrutura comprida, parecida com um espaguete. E proteínas com essa mesma forma são encontradas no cérebro de vítimas do mal da vaca louca e de Alzheimer. Se entendermos como elas se formam, será mais fácil prevenir essas doenças degenerativas. Também estudo uma proteína do leite que dá origem a um gel quando aquecida. Serve para cultivar células que podem recuperar tecidos. Se, por exemplo, alguém quebrar o pescoço, a idéia é, no futuro, injetar essa solução de proteínas para estimular células que regenerem os nervos da região.
O que Cavendish hoje tem em comum com o laboratório de Watson e Crick?
R: Trabalhar aqui continua estimulante porque convivemos com ótimos cientistas. Mas algumas coisas mudaram. Para descobrir a estrutura do DNA, Watson e Crick passaram muito tempo processando dados que obtiveram com imagens de raios X e fazendo cálculos manualmente. Hoje, com os computadores, os cálculos são bem mais rápidos e a análise de imagens dos microscópios eletrônicos é muito mais fácil.
David Munday, departamento de Física de Partículas

Botando para quebrar
Em 1897, o físico J.J. Thomson fez o primeiro grande achado de Cavendish: o elétron. Nos anos seguintes, outras pesquisas levaram à descoberta do nêutron e à primeira divisão de um átomo com um acelerador de partículas. Hoje, Cavendish continua a buscar os ingredientes da matéria. Ele está envolvido na construção do maior acelerador de partículas do mundo, o LHC, um túnel de 27 quilômetros entre a Suíça e a França. É para lá que David Munday viaja duas vezes por mês.
O que o LHC pode revelar?
R: Logo após o Big Bang, partículas se moviam com energia extraordinariamente alta numa área muito pequena, pois o Universo era bem menor. Vamos reproduzir o estado do Universo menos de um bilionésimo de segundo depois do Big Bang no LHC acelerando e colidindo prótons vindos de direções opostas.

Que resultado esperam?
R: Muitas partículas vão surgir da colisão, talvez até algumas desconhecidas. Estamos particularmente interessados no bóson de Higgs, que em teoria seria responsável por agregar massa às outras partículas. A teoria prevê sua existência. Mas, na prática, até agora nunca se viu um deles.

O que mudou no Cavendish desde a descoberta do elétron?
R: Além de contar com novas tecnologias, hoje temos muito mais colaboração internacional. Mas nem tudo mudou por aqui. Até hoje, todo dia, às 11 da manhã, nós do grupo de física de partículas nos encontramos para tomar café. É uma tradição que começou nos tempos em que Thomson descobriu o elétron. A gente aproveita para falar de tudo: do tempo à ciência. É bom porque fortalece o espírito de equipe e também dá um pouco de descanso para o cérebro.
Paul Alexander*, departamento de Astrofísica

Achar o pulsar
Em 1967, a estudante de doutorado em Cavendish Jocelyn Bell e Antony Hewish, seu orientador, acharam por acaso um tipo novo de estrela, sem brilho, mas que pulsava quando vista por radiotelescópios. Foi a descoberta dos pulsares, que rendeu um Prêmio Nobel a Hewish e deu origem à controvérsia de por que Bell não teria sido premiada. Os radiotelescópios hoje são usados no laboratório para descobrir a origem de estrelas, como explica o físico Paul Alexander.
Qual é o objeto de sua pesquisa?
R: Queremos saber como, quando e por que estrelas se formam. Em algumas galáxias, elas surgiram logo nos primeiros estágios do Universo. Em outras, estão aparecendo ainda. Queremos entender o porquê dessas diferenças. Também precisamos saber como a interação entre galáxias contribui para a formação de estrelas. Há pouco tempo, descobrimos aqui que galáxias não muito próximas se influenciam via gravidade e que isso pode desengatilhar o processo de formação de novas estrelas.

Que equipamentos você utiliza?
R: Costumo usar dados de radiotelescópios de Manchester e do Havaí. Com a internet, também temos acesso a informações de outros radiotelescópios pelo mundo. Esse tipo de equipamento é importante porque possibilita observar gases, a matéria-prima para a formação das estrelas.

Quais os planos para o futuro?
R: Estou envolvido no projeto para a construção do SKA, um telescópio internacional 100 vezes maior do que os de hoje, que deverá estar pronto em 2015. Com ele, meu grupo quer estudar a evolução do hidrogênio, o gás mais comum do Universo. Como observaremos enormes distâncias, poderemos ver o que ocorreu com o hidrogênio logo nos primeiros estágios da história do Universo.

14.296 – Como um foguete entra em órbita?


180px-Orbital_motion
Lançar um foguete significa ligar uma fogueira superpotente, capaz de impulsioná-lo ao espaço até atingir uma altitude predeterminada e, chegando lá, colocar um satélite ou uma sonda de pesquisa em órbita. A viagem não é tão longa: as órbitas mais baixas estão a apenas 200 km de altura. Daria para chegar lá em duas horas de carro – não fosse, claro, por um detalhe: a gravidade, a força que o planeta exerce sobre objetos que queiram deixá-lo, algo como um poderoso puxão para baixo. Como não dá para pegar uma estrada, o jeito é gastar uns US$ 10 milhões para montar um foguete. Toda essa grana é queimada em no máximo nove minutos, tempo decorrido entre o lançamento na base e a colocação do satélite em órbita. Mas, nesse caso, parece que torrar dinheiro vale a pena. Todo ano, centenas de foguetes são lançados ao espaço com missões variadas, num mercado que movimenta pelo menos US$ 25 bilhões por ano. O Brasil fez o seu foguete, o Veículo Lançador de Satélites (VLS), para pegar uma fatia desse mercado.

PEÇA A PEÇA
Quatro estágios propulsores fazem o foguete vencer a gravidadeCOMBUSTÍVEL LÍQUIDO – Para gerar os gases que empurram o foguete, são necessárias duas substâncias: o combustível e o comburente. Quando são líquidas, elas ficam em tanques separados e só se encontram numa câmara especial, com uma abertura para a saída do jato

COMBUSTÍVEL SÓLIDO – O combustível e o comburente também podem ser sólidos – nesse caso, eles ficam juntos no mesmo tanque. Eles só não acendem antes da hora porque para isso é preciso uma centelha, disparada na hora de ligar o motor. Este é o modelo usado pelo VLS brasileiro
Nada de peso inútil: cada estágio vira lixo no final de seu trabalho.
O funcionamento dos foguetes é baseado na Lei de Newton – da ação e reação.

Como são basicamente um projétil que leva combustível – sólido ou líquido – no seu interior. Depois, ele é queimado progressivamente na câmara de combustão, gerando gases quentes que se expandem.

Na sequência, os gases são expelidos para trás por uma abertura na traseira e, ao mesmo tempo, acontece o fenômeno empuxo – reação na parede interna da câmara oposta à saída traseira. O empuxo atua de baixo para cima, no sentido contrário ao da força da gravidade.

Os comburentes utilizados nos foguetes de combustível líquido geralmente são hidrogênio e oxigênio líquidos. Para poder entrar em órbita, é preciso que um foguete atinja cerca de 28.440 km/h para que escape da gravidade terrestre, que o puxa sempre para baixo. Essa é a velocidade necessária para que um corpo fique em órbita da Terra: cerca de 7,9 km/s (ou 28.440 km/h).

Para sair em definitivo da Terra, no entanto, um foguete precisa de uma velocidade de escape (11,2 km/s de velocidade) – maior que a utilizada nos satélites. Para isso, o foguete deve ser o mais leve possível e precisa ser construído em vários estágios, que se resumem a, basicamente, dois ou mais foguetes, colocados um em cima do outro. Quando o foguete do estágio inferior queima todo o seu combustível, ele se desacopla do conjunto e aciona o segundo estágio, permitindo que o corpo restante do foguete aproveite o impulso obtido e alivie o peso considerado “peso morto”, ganhando mais velocidade na subida.

As naves do tipo ônibus espacial são colocadas e mantidas em órbita com o auxílio de um conjunto de foguetes externos, movidos a combustível sólido (combustível e comburentes na forma de pó, aglutinados numa pasta com um catalisador), auxiliados por motores próprios e alimentados por um tanque de combustível líquido de hidrogênio.

https://web.moderna.com.br/html/html5/foguete/
Velocidade de escape, em física, é a velocidade na qual a energia cinética de um corpo é igual em magnitude à sua energia potencial em um campo gravitacional.

Ela é normalmente descrita como a velocidade necessária para “libertar-se” de um campo gravitacional; entretanto, isto não vale para objetos que tem propulsão própria, pois tal objeto pode libertar-se com qualquer velocidade maior do que zero, por exemplo mantendo uma velocidade constante de mesma direção que o peso mas de sentido contrário.
Para um dado campo gravitacional e uma dada posição, a velocidade de escape é a velocidade mínima que um objeto sem propulsão precisa para mover-se indefinidamente da origem do campo, em vez de cair ou ficar em órbita a uma certa distância da origem. Para isto acontecer o objeto não deve ser influenciado por nenhuma força significante exceto o campo gravitacional; em particular não pode haver propulsão (como em um foguete), nem haver atrito significativo (como o entre o objeto e a atmosfera terrestre – essas condições correspondem à queda livre), e não há radiação gravitacional.

Um aspecto um pouco contra intuitivo da velocidade de escape é que ela é independente de direção, então “velocidade” é um termo incorreto; é uma quantidade escalar e seria melhor descrita como “rapidez para escape” ou “velocidade escalar de escape”. A forma mais simples de derivar a fórmula da velocidade de escape é usar a conservação de energia, assim: para poder escapar, um objeto tem que ter pelo menos tanta energia cinética quanto o acréscimo de energia potencial resultante de mover-se para uma altura infinita.

Definida de uma maneira um pouco mais formal, “velocidade de escape” é a velocidade inicial necessária para ir de um ponto em um campo potencial gravitacional para o infinito com uma velocidade residual zero, relativa ao campo. Da mesma forma, um objeto que parte do repouso no infinito e cai em direção à massa que o atrai irá, em sua trajetória (até atingir a superfície), mover-se a uma velocidade igual à velocidade de escape correspondente a sua posição. Em geral, o ponto inicial está na superfície de um planeta ou de uma lua. Na superfície da Terra, a velocidade de escape é cerca de 11,2 quilômetros por segundo, o equivalente a 40 320 km/h, cerca de 111 vezes mais rápido do que um carro de fórmula 1 em reta livre, ou cerca de 30 vezes mais rápido do que a velocidade do som a 25 °C. Entretanto, a 9 000 km de altitude é pouco menor que 7,1 km/s.

combustivel foguete

A velocidade de escape relativa à superfície de um corpo em rotação depende da direção em que o corpo que está escapando viaja. Por exemplo, como a velocidade de rotação da Terra é de 465 m/s para o leste no equador um foguete lançado tangencialmente do equador da Terra para o leste precisa de uma velocidade inicial de cerca de 10,735 km/s relativa à Terra para escapar enquanto um foguete lançado tangencialmente do equador para o oeste necessita de uma velocidade inicial de cerca de 11,665 km/s relativa à Terra. A velocidade superficial diminui com o cosseno da latitude geográfica, desta forma as estações de lançamento de foguetes são localizadas geralmente próximas do equador tanto quanto possível, como por exemplo o Cabo Canaveral americano na Flórida e o Centro Espacial da Guiana europeu, somente cinco graus do equador, na Guiana Francesa (ou o Centro de Lançamento de Alcântara brasileiro, situado a 2°22’54,70″S, bem mais perto da linha do equador).

De forma simplificada, todos os objetos na Terra têm a mesma velocidade de escape. Não importa se a massa é 1 kg ou 1 000 kg, a velocidade de escape é sempre a mesma. O que muda de um caso para outro é a quantidade de energia necessária para acelerar a massa até a velocidade de escape: a energia necessária para um objeto de massa m escapar do campo gravitacional da Terra é {\displaystyle GMm/r_{0}}GMm/r_0, uma função da massa do objeto (onde {\displaystyle {r_{0}}}{r_0} é o raio da Terra). Objetos mais massivos necessitam de mais energia para atingir a velocidade de escape.
A velocidade de escape é às vezes confundida com a velocidade com que um veículo autopropulsionado (como um foguete) deve atingir para deixar a órbita, entretanto este não é o caso. A velocidade de escape citada faz referência a velocidade que um objeto qualquer necessita para sair do efeito da gravidade na superfície do planeta. Porém, à medida que a altitude aumenta, essa velocidade diminui.

Um objeto autopropulsionado pode continuar se afastar do planeta em qualquer direção a uma velocidade menor que a velocidade de escape. Se a velocidade do objeto for abaixo da velocidade de escape para dada altura e a propulsão for removida, o objeto irá cair ou entrar em órbita. Se a velocidade for igual ou acima da velocidade de escape naquele ponto, ele terá energia suficiente para “escapar” do campo gravitacional, e não irá voltar para a superfície.
Devido à atmosfera, não é útil (e mesmo muito difícil) dar a um objeto próximo à superfície da Terra uma velocidade de 11,2 km/s, já que estas velocidades estão bem além dos regimes supersônicos para a maioria dos sistemas de propulsão e faria com que os objetos queimassem devido ao atrito com a atmosfera. Para uma órbita de escape real, uma nave é primeiro colocada em órbita baixa da Terra, e então acelerada até a velocidade de escape naquela altitude, que é um pouco menor, cerca de 10,9 km/s. A aceleração necessária, entretanto, geralmente é bem menor por que naquela órbita a nave já tem uma velocidade de 8 km/s.
Para deixar o planeta Terra é necessária uma velocidade de escape de 11,2 km/s, entretanto uma velocidade de 42,1 km/s é necessária para escapar da gravidade do Sol (e sair do sistema solar) na mesma posição.

14.198 – Física contra o Câncer – Acelerador de partículas que cabe num chip ajudará no combate ao câncer


ac contra cancer
Equipamento poderá ser usado para destruir tumores sem afetar as células saudáveis ao redor
Pesquisadores da Universidade de Stanford e do SLAC National Accelerator Laboratory, nos EUA, conseguiram construir um acelerador de partículas em um chip, que pode revolucionar áreas como a pesquisa científica e a medicina.
Aceleradores de partículas são geralmente estruturas gigantescas, alguns com quilômetros de extensão, onde partículas subatômicas são aceleradas a 94% da velocidade da luz. Para miniaturizar esta tecnologia os cientistas desenvolveram um software que trabalhou “ao contrário”: em vez de projetar um acelerador e ajustar seus elementos para obter a máxima potência dentro daquele design, os cientistas estabeleceram quanta energia o acelerador deveria produzir e deixaram o software se encarregar de projetar as estruturas necessárias para atingir o objetivo.
O chip consiste em um “canal” escavado em um substrato de silício, no qual desembocam elétrons transportados por “fios”. Em uma das pontas do canal está uma fonte de luz infravermelha que pulsa 10 mil vezes por segundo. A cada pulso os fótons produzidos se chocam com os elétrons, acelerando-os ao longo do chip.
Um fluxo de partículas útil para pesquisa científica ou médica tem um milhão de Elétron-volt (1 MeV). Para atingir esta marca, seriam necessários 1.000 dos novos aceleradores, cada um compondo um “estágio” de um sistema maior. Felizmente eles são autocontidos (todos os componentes necessários para a aceleração estão no chip) e podem ser combinados.
Ultrapassado o obstáculo inicial do design do acelerador, os pesquisadores agora irão se concentrar em aumentar sua potência, e esperam atingir a marca de 1 MeV ainda em 2020. Eles comparam seu trabalho ao dos pioneiros da computação, que condensaram os imensos computadores da década de 40, que ocupavam salas inteiras, em minúsculos componentes menores que uma unha.
A tecnologia poderá ser usada em novas terapias de radiação para combate ao câncer, entregando um feixe de elétrons preciso que destrói as células de um tumor sem afetar os tecidos ao seu redor.
“Os maiores aceleradores são como telescópios poderosos. Existem poucos no mundo e os cientistas precisam ir a lugares como o SLAC para usá-los”, disse Jelena Vuckovic, pesquisadora que liderou o projeto. “Queremos miniaturizar a tecnologia dos aceleradores de partículas de forma que a torne uma ferramenta de pesquisa mais acessível”.

14.181 – Física – Como Construir Uma Máquina do Tempo?


Um astrofísico chamado Ron Mallet acredita que encontrou uma maneira de voltar no tempo. O professor de física da Universidade de Connecticut afirma que escreveu uma equação científica que pode servir de base para uma máquina do tempo real. Mallet chegou a construir um protótipo de um dispositivo de um componente-chave de sua teoria. Apesar disso, o restante da comunidade científica não está convencida de que a máquina do tempo vai se concretizar.

Para entender a máquina é preciso conhecer o básico da teoria da relatividade de Albert Einstein. Segundo o cientista, o tempo acelera e desacelera dependendo da velocidade com que um objeto se move. Com base nisso, se uma pessoa estivesse viajando perto da velocidade da luz no espaço, o tempo passaria mais lentamente para ele do que de alguém que permanece na terra. Porém, embora alguns físicos aceitem que seria possível viajar para o futuro dessa maneira, ir para o passado seria outra questão. Mallet acredita que lasers podem resolver isso.

O astrofísico disse à CNN que sua máquina do tempo depende da teoria geral da relatividade. Segundo ela, objetos massivos dobram o espaço-tempo, um efeito que conhecemos como gravidade, e quanto maior a gravidade, menor o tempo. “Se você pode dobrar o espaço, existe a possibilidade de você torcer o espaço. Na teoria de Einstein, o que chamamos de espaço também envolve tempo, é por isso que se chama espaço-tempo. O que você faz com o espaço, pode ser feito com o tempo também”, afirmou.

Ele acredita que é teoricamente possível transformar o tempo em um loop que permitiria viajar no tempo para o passado. Ele chegou a construir um protótipo mostrando como os lasers podem ajudar a alcançar esse objetivo. “Estudar o tipo de campo gravitacional produzido por um laser anel pode levar a uma nova maneira de olhar para a possibilidade de uma máquina no tempo baseada em um feixe de luz circulante”.

Por mais otimista que Mallet esteja, seus colegas estão céticos quanto ao sucesso de sua teoria. O astrofísico Paul Sutter disse que “existem falhas profundas em sua matemática e em sua teoria, e, portanto, um dispositivo prático parece inatingível”. O próprio autor da teoria admite que sua ideia é apenas isso no momento, uma teoria. E mesmo que sua máquina funcione, reconhece que existiria uma grande limitação que impediria alguém de viajar de volta no tempo e mudar algo no passado.

14.166 – Química – Ponto de Fusão e Ebulição


No caso do ponto de fusão, a substância muda do estado sólido para o estado líquido. Já o ponto de ebulição refere-se a mudança do estado líquido para o estado gasoso.
Por exemplo, o gelo começa a se transformar em água na forma líquida, quando sua temperatura é igual a 0 ºC . Logo, o ponto de fusão da água é 0 ºC (sob pressão de 1 atmosfera).
Para passar de líquida para vapor, a água deve atingir a temperatura de 100 ºC. Assim, o ponto de ebulição da água é 100 ºC (sob pressão de 1 atmosfera).
Quando uma substância no estado sólido recebe calor, ocorre um aumento no grau de agitação de suas moléculas. Consequentemente sua temperatura também aumenta.
Ao atingir uma determinada temperatura (ponto de fusão), a agitação das moléculas é tal que rompe as ligações internas entre os átomos e moléculas.
Nesse ponto, a substância começa a mudar seu estado e passará para o estado líquido se continuar recebendo calor.
Durante a fusão sua temperatura se mantém constante, pois o calor recebido é usado unicamente para a mudança de estado.
O calor por unidade de massa necessário para mudar de fase é chamado de calor latente de fusão (Lf) e é uma característica da substância.
A temperatura do ponto de fusão e do ponto de ebulição depende da pressão exercida sobre a substância.
De uma maneira geral, as substâncias aumentam de volume quando sofrem fusão. Este fato faz com que quanto maior a pressão, maior deverá ser a temperatura para que a substância mude de fase.
A exceção ocorre com algumas substâncias, entre elas a água, que diminui seu volume quando sofrem fusão. Neste caso, uma maior pressão irá diminuir o ponto de fusão.
Uma diminuição na pressão faz com que o ponto de ebulição de uma determinada substância seja menor, ou seja, a substância irá ferver em uma menor temperatura.
Por exemplo, em lugares acima do nível do mar a água ferve com temperaturas menores que 100 ºC. Com isso, nesses lugares demora-se muito mais para cozinhar do que em lugares ao nível do mar.

14.139 – O que é a Teoria Quântica?


teoria-quantica
As verdadeiras revoluções científicas são aquelas que além de ampliar os conhecimentos existentes, se fazem também acompanhar de uma mudança nas idéias básicas sobre a realidade. Um exemplo célebre foi a revolução do polonês Nicolau Copérnico, no século XVI, que derrubou o conceito segundo o qual a Terra estava imóvel no centro do Universo, afirmando em vez disso que nosso planeta gira em torno do Sol. Depois, o inglês Isaac Newton suplantou o conceito de espaço absoluto e dois séculos mais tarde o alemão Albert Einstein aposentou também a ideia do tempo absoluto. Embora importantes, nenhuma dessas grandes revoluções na ciência pode rivalizar com o impacto da revolução quântica. A partir dela, os físicos foram forçados a abandonar não apenas os conceitos do homem sobre a realidade – mas a própria realidade. Não admira que a Física Quântica tenha adquirido a reputação de algo bizarro ou místico. Tanto que o dinamarquês Niels Bohr, um dos criadores da nova ciência, chegou a afirmar certa vez que só não se escandalizou com a Física Quântica quem não a entendeu.
O ponto de partida para chegar às idéias quânticas é o átomo, já conhecido dos filósofos gregos, na Antigüidade. Eles acreditavam que toda matéria era constituída por minúsculos fragmentos indestrutíveis. Ora, o domínio da Física Quântica é formado justamente pelos fragmentos desses fragmentos. Desde 1909, de fato, o inglês Ernest Rutherford estabeleceu que os átomos, aparentemente indivisíveis, são compostos por um núcleo ao redor do qual giram outras partículas, os elétrons. Segundo esse modelo, o núcleo podia ser comparado ao Sol, enquanto os elétrons seriam os planetas orbitando a sua volta. E importante salientar a ideia de que os elétrons seguiam trajetórias bem definidas, de tal modo que a qualquer momento seria possível determinar a sua posição e a sua velocidade.
O problema é que, ao contrário dos planetas, os elétrons não seguem um trajeto claro e inequívoco quando se movem. Seus caminhos caprichosos só seriam revelados anos depois do modelo atômico proposto por Rutherford. O primeiro sinal de que a visão “planetária”não funcionava surgiu em 1911, quando Bohr escreveu uma nova fórmula sobre a emissão de energia pelos átomos. Para surpresa geral, a fórmula mostrava que havia lugares proibidos para o átomo – regiões inteiras, em torno do núcleo atômico, onde os elétrons não podiam girar. Podiam saltar de uma órbita mais distante a outra mais próxima, mas não podiam ocupar diversas órbitas intermediárias. E, nesse caso, emitiam um pacote inteiro de energia – nunca menos de certa quantidade bem definida, desde então chamada quantum de energia.
Era estranho, já que os planetas podiam girar a qualquer distância do Sol e mudar de órbita alterando o seu nível energético em qualquer quantidade, sem limite. Apesar disso, a fórmula de Bohr explicava com precisão os fatos conhecidos sobre a emissão de luz pelos átomos, de modo que a nova Física do quantum acabou se impondo com firmeza. Dez anos mais tarde, o enigma das órbitas proibidas foi resolvido de uma maneira que afastou ainda mais do átomo a ideia de um sistema solar em miniatura. Desde a década de 20, com efeito, as órbitas dos elétrons passaram a ser vistas como algo semelhante às ondas sonoras que compõem as notas de um instrumento musical: portanto. uma imagem muito distante dos corpos sólidos girando em torno do Sol.
O primeiro passo na direção das ondas eletrônicas surgiu em experiências nas quais um feixe de elétrons atravessava um cristal e se espalhava mais ou menos como a luz ao formar um arco-íris. O físico francês Louis de Broglie mostrou que o comprimento dessas inesperadas ondas podia ser relacionado com a velocidade dos elétrons. Segundo De Broglie, elétrons em alta velocidade se comportam como ondas curtas e elétrons em baixa velocidade, como ondas longas. Assim, tornou-se possível transformar uma característica dos movimentos mecânicos – a velocidade – em um traço típico dos fenômenos ondulatórios, o comprimento de onda.
Essa foi a deixa que o alemão Erwin Schrodinger aproveitou para criar a imagem musical do átomo mostrando que ela desvelava o enigma das órbitas proibidas. Basta ver que, ao vibrar, uma corda de violão produz uma nota fundamental, como o mi por exemplo, e diversas outras notas geralmente inaudíveis, que enriquecem o som mais forte.
São os chamados harmônicos, cujas vibrações são sempre múltiplos inteiros da vibração principal: pelo menos duas vezes mais rápidas do que esta, mas nunca 2,5 vezes, ou 3.5 vezes. O mesmo ocorre no átomo, imaginou Schrodinger: nesse caso, o elétron só gira onde o tamanho da órbita lhe permite formar ondas inteiras, excluindo as órbitas que, para serem completadas, exigiriam uma fração de onda.
O resultado confirmava a fórmula intuitiva de Bohr. dando início a uma nova teoria física, daí para a frente chamada Mecânica Quântica. Sua grande marca foi a introdução do conceito de onda de maneira tão fundamental quanto a noção de partícula. Coube ao alemão Max Born, outro dos grandes pioneiros do século, explicar como um elétron podia ser ao mesmo tempo onda e partícula. Para ele, a onda não era nenhum tipo de substância material, mas um meio de avaliar certas medidas, como a velocidade ou a posição de uma partícula, “Onda eletrônica”, na verdade, seria uma expressão com o mesmo sentido que se atribui à expressão “onda de criminalidade”. Assim, quando há uma onda de crimes numa cidade, há grande probabilidade de um crime ocorrer nessa cidade, a qualquer momento.
A onda descreve um padrão estatístico, dizendo em que período de tempo, ou em que locais, os crimes são mais prováveis. Da mesma maneira, a onda associada a um elétron descreve a distribuição estatística dessa partícula, determinando onde é mais provável que ela esteja. A ondulação nada tem a ver com a substância do elétron, mas em cada ponto do espaço diz qual a probabilidade de que ele se encontre ali. Essa interpretação de Max Born poderia parecer frustrante para quem esperasse ver as ondas ligadas a algum segredo sobre a natureza da matéria, mas é uma dramática mudança na própria ciência. Até então, havia grande convicção de que o Universo fosse estritamente determinístico e de que, portanto, sempre se poderia conhecer com precisão a posição de um corpo. Para a Mecânica Quântica, porém, o Universo é inerentemente não-determinístico, uma idéia que Albert Einstein nunca aceitou. “Deus não joga dados com o Universo”, respondia ele aos que argumentavam em favor da probabilidade quântica. Mas existe um método poderoso para tentar adivinhar os lances dos dados divinos: trata-se do célebre Princípio da Incerteza, enunciado pelo físico Wemer Heisenberg, em 1927.
Sua base é uma fórmula para medir pares de valores, como por exemplo velocidade e posição. O princípio diz que, se a posição for medida com grande precisão, é possível ter uma certa ideia do valor da velocidade. Se, em vez disso, se medir a velocidade com precisão, a posição pode ser avaliada dentro de certos limites. A regra vale para outros pares de valores, como tempo e energia. Muitas vezes, o princípio tem sido explicado como uma interferência do medidor sobre o objeto medido: para saber a posição de um elétron é preciso agir sobre ele, por meio de um raio de luz, por exemplo. O raio incide sobre o alvo e, dependendo do desvio que sofra permite avaliar a posição do alvo.
É o mesmo procedimento que se usa para ver um objeto grande, como um carro, e determinar onde está. É claro que o levíssimo impacto de um ponto de luz não tem nenhum efeito mensurável sobre o movimento do carro, enquanto no caso do elétron o choque é devastador, perturbando a medição. Em conseqüência, haveria uma incerteza inerente a toda medição em escala microscópica. Na realidade, segundo a concepção moderna, não há sentido dizer que um elétron tem ao mesmo tempo posição e velocidade bem definidas. A incerteza seria inseparável da própria natureza dos corpos quânticos.
É mais fácil imaginar que um elétron tem duas caras – como um ator desempenhando dois papéis em um filme. Ao medir sua posição, se estará observando O “elétron-em-posição”, um dos papéis do ator. O “elétron-em-velocidade ” entra em cena quando se faz uma medida de velocidade. No primeiro caso, o elétron se assemelha mais a uma partícula, já que a imagem que temos é a de um corpo bem localizado no espaço. Quando a medida mais precisa é a da velocidade e o corpo não tem uma posição definida – há diversos lugares com igual probabilidade -, então surge com mais força a sua característica de onda.
A experiência que melhor ressalta a dupla face dos elétrons é a das fendas de interferência, inicialmente realizada com luz pelo inglês Thomas Young, no início do século XIX. A comparação com a luz é importante. Um raio luminoso é dirigido para uma tela com uma estreita fenda de modo a projetar uma imagem difusa em uma segunda tela colocada atrás da primeira. Se a primeira tela tiver duas fendas em vez de uma, surgirão duas imagens difusas, mais ou menos circulares, que se sobreporão parcialmente. Mas as imagens sobrepostas não se tornam uma simples soma de luzes: em vez disso, aparecem diversas faixas intercaladas de luz e sombra. São as chamadas franjas de interferência.
O mesmo efeito é obtido se, em lugar de luz, se usar um feixe de elétrons. A franja eletrônica, desenhada em uma tela de TV, é uma demonstração da natureza ondulatória do elétron. As faixas “claras”, nesse caso, representam as posições onde é mais provável encontrar os elétrons. É impossível explicar a interferência de elétrons por meio da noção tradicional de partícula mecânica. E claro que um elétron não pode passar pelas duas fendas ao mesmo tempo, pelo menos enquanto se mantiver apenas como uma partícula, à maneira antiga. Mas a interferência é uma combinação daquilo que acontece nas duas fendas ao mesmo tempo. Então, se o elétron passa por uma única fenda, como será que a existência da outra fenda, por si só, pode criar as franjas claras e escuras?
A resposta é que a partícula está se comportando como uma onda. Mesmo quando só um elétron é atirado contra as fendas, o padrão de interferência surge na tela, interferindo, por assim dizer, consigo mesmo. Segundo o princípio da incerteza é possível fazer uma medida precisa da posição do elétron e decidir em qual das duas fendas ele está, mas o preço a pagar é uma perda de precisão sobre o rumo que ele tomará em seguida. De modo que se terá apenas uma vaga idéia de seu movimento entre uma placa e outra: a maior probabilidade é de que na segunda placa se formará uma imagem difusa e aproximadamente circular.
Não é possível avaliar a precisa distribuição de claros e escuros das franjas de interferência. Caso se queira medir diretamente esse padrão, será preciso abandonar qualquer pretensão de saber por qual fenda o elétron passou: é igualmente provável que tenha passado por qualquer uma delas, o que significa uma incerteza sobre sua posição. Um meio de entender tudo isso é imaginar que existam dois mundos, de tal forma que em um deles o elétron passe pela primeira fenda e no outro, pela segunda. Os dois mundos coexistem, misturando suas realidades, até o momento em que se faça uma medida direta da posição do elétron. Nesse caso, as franjas de interferência – formarão uma realidade bem definida apenas enquanto não se medir a posição do elétron em uma ou outra fenda.
O fato é que os pesquisadores podem escolher o que querem ver – uma outra face do elétron – e por isso se costuma dizer que a natureza do elétron depende do homem. Nem todos os físicos levam a sério a ideia de duas realidades existindo uma ao lado da outra, mas é possível puxar pela imaginação e penetrar ainda mais profundamente nos seus paradoxos. No caso do experimento com as franjas de interferência, o que aconteceria se o feixe de elétrons dirigido para as fendas alcançasse a segunda tela, sem que ninguém observasse o resultado? A tela poderia ser fotografada e a foto, arquivada, para que não fosse vista. Assim, algo teria acontecido, mas, como não foi observado, não poderia existir como realidade concreta – até que alguém finalmente se decidisse a lançar um olhar criador para o fantasma perpetuado no filme.
Trata-se de um célebre quebra-cabeça criado por Erwin Schrodinger e desde então apelidado “paradoxo do gato”.
Esse experimento mental, como dizia o físico, funciona da seguinte forma: um gato é aprisionado numa caixa junto com uma garrafa selada contendo gás venenoso. Sobre a garrafa pende um martelo pronto para quebrá-la. O gatilho dessa armadilha é uma substância radioativa que emite partículas a alta velocidade. Em 1 minuto, há uma chance de 50% de que a substância emita radiação e solte o martelo. fazendo quebrar a garrafa e liberar o gás venenoso. Assim, ao cabo de 1 minuto, coexistem dois mundos possíveis. Num deles, o gatilho foi acionado e o gato está morto; no outro, não houve emissão de radiação e o gato está vivo. Enquanto não se abrir a caixa, nenhuma das duas possibilidades poderá ser considerada real e o gato não será muito diferente dos mortos-vivos das histórias de terror. Ele permanece numa fantasmagórica superposição de realidades, entre a vida e a morte.
O físico inglês Anthony Leggett imagina que os enigmas quânticos não valem para os gatos – eles são complexos demais, do ponto de vista físico, para ficarem suspensos entre dois mundos-fantasmas. A mecânica probabilística está definitivamente confinada ao universo das partículas fundamentais, as formas mais simples da matéria. Leggett. dessa maneira, propõe que existem duas Físicas diferentes regendo o mundo, uma delas com leis para as partículas, individualmente, outra com leis para os vastos conjuntos de átomos que compõem os seres vivos e os objetos macroscópicos.
O físico americano Eugene Wigner, por sua vez, criou uma especulação radical segundo a qual é a mente do físico que cria toda a realidade. Seria a consciência do homem que filtra a confusão quântica do Universo e gera uma realidade bem definida. Roger Penrose é outro cientista a imaginar um entrelaçamento entre a mente e a realidade. Ele pensa que os mecanismos mentais do raciocínio estão submetidos às flutuações quânticas, dando origem, por exemplo, às inexplicáveis explosões criativas dos músicos ou dos matemáticos. Muitos pensadores, como Fritjof Capra, supõem além disso um paralelo entre a realidade quântica e as concepções místicas das religiões orientais.
Todas essas especulações indicam como são profundos os paradoxos que, há quase 1 século, entraram para os livros de Física por meio da Mecânica Quântica. O fato de continuarem sendo debatidos por tanto tempo pode não impressionar aqueles cientistas para os quais as teorias servem apenas como instrumento de trabalho. Mas poucos adotariam a opinião radicalmente cética de Einstein que, nas suas próprias palavras, enterrou a cabeça na areia “de medo do temível quantum”.
O sim, o não e o talvez

O uso da probabilidade nos cálculo da Física deu excelente resultado, levando a uma formidável ampliação dos horizontes do conhecimento e a inventos como a TV e o raio laser. Mas a probabilidade também tem as suas limitações e, quando aplicada a uma teoria fundamental, como é o caso da Mecânica Quântica, provoca certa inquietação. Uma coisa, por exemplo, é alguém olhar um carro e dizer: “A velocidade daquele carro é de 100 quilômetros por hora”. Outra, bem diferente, é dizer: “Aquele carro não tem velocidade definida; é provável que seja 100 quilômetros por hora, mas também pode ser 80 ou 120”.

Nas duas situações, existem informações básicas sobre o carro – calcular a velocidade é um dado absolutamente fundamental para qualquer teoria física. Mas, na primeira, a informação é inequívoca: um único número. Em lugar disso, a resposta probabilística fornece um conjunto de números, como se o carro pudesse desenvolver diversas velocidades ao mesmo tempo. Do ponto de vista científico, as respostas múltiplas da Mecânica Quântica significam apenas isso: a teoria, em certos casos, oferece um conjunto de resultados mais ou menos prováveis para determinado cálculo. Qualquer interpretação além disso é simples exercício de imaginação. Um problema é que, no caso de um corpo como o carro, a Física sempre dá uma resposta única e taxativa – a probabilidade só afeta os corpos microscópicos.

Esse fato força uma divisão do mundo físico em duas partes, numa das quais valem leis probabilísticas e deterministas, e no outro, apenas leis probabilísticas. Atualmente, a grande maioria dos cientistas aceita, sem preconceito e sem versões mirabolantes, as equações probabilísticas. O que nem todos aceitam é o casamento da nova Física com a religião. “Na minha opinião, não tem cabimento associar o misticismo à Mecânica Quântica”, pondera o professor Henrique Fleming, físico teórico da Universidade de São Paulo. Isso causa uma certa confusão entre o que é ciência e o que está mais próximo da religião ou da Filosofia, acabando por não esclarecer nem uma coisa nem outra.

14.138 -Mega Cientistas – Max Planck


max-planck
Max Karl Ernst Ludwig Planck, cientista alemão nascido em Kiel no dia 23 de abril de 1858, abriu caminho para o que hoje conhecemos como teoria quântica.
Pertencendo a uma família de grande tradição acadêmica, Planck estudou nas Universidades de Munique e Berlim, onde teve aulas com Helmholtz e Kirchhoff, e recebeu seu doutorado, em 1879. Até o contato com esses dois grandes cientistas, ainda tinha dúvidas entre seguir a carreira musical ou a científica.
Ele foi Professor em Munique de 1880 a 1885, em seguida, Professor Associado de Física Teórica, em Kiel, até 1889. Com a morte de Kirchkoff, assumiu a Cátedra de Física Teórica da Universidade de Berlim (1887), onde foi posteriormente reitor. Permaneceu trabalhando nesta Universidade até sua aposentadoria em 1926. Mais tarde ele se tornou presidente da Sociedade para a Promoção da Ciência Kaiser Wilhelm (hoje Sociedade Max Planck), um posto que ocupou até 1937. A Academia Prussiana de Ciências o nomeou membro em 1894 e Secretário Permanente, em 1912.
Os primeiros trabalhos de Planck foram sobre termodinâmica. Também publicou trabalhos sobre a entropia, termoeletricidade e na teoria das soluções diluídas.
Ao mesmo tempo, também os problemas da radiação envolveram sua atenção. A partir desses estudos, foi levado para o problema da distribuição de energia no espectro de radiação total. Levando em conta as teorias clássicas, a Energia emitida por um corpo que não reflete luz (objeto teórico conhecido como Corpo Negro) deveria variar na mesma proporção da temperatura. Na prática, não era isso que acontecia. Planck foi capaz de deduzir a relação entre a energia e a frequência da radiação. Em um artigo publicado em 1900, ele anunciou essa relação:
E=h.f
Onde E é energia, f é frequência e h é uma constante universal, hoje conhecida como Constante de Planck. Esta constante foi baseada na ideia revolucionária de que a energia emitida por um corpo negro só poderia assumir valores discretos conhecidos como quanta (palavra vinda do latim). Um quantum seria um pacote de energia emitido e quanta é plural de quantum.
Essa descoberta foi determinante para a física atômica, pois fundamentou o modelo atômico de Niels Bohr (1913) e abriu caminho para a teoria de Einstein que explica o efeito fotoelétrico. A introdução do conceito de descontinuidade contrariou o princípio do filósofo alemão Wilhelm Leibniz, “Natura non facit saltus” (a natureza não dá saltos), que dominava todos os ramos da ciência na época, tornando-se a teoria quântica, na grande revolução que levou à Física Moderna do século XX. Foi o ponto de partida de uma nova lógica nas várias pesquisas sobre a estrutura do átomo, radiatividade e ondulatória e rendeu a Max Planck o Prêmio Nobel de Física de 1918.
Planck enfrentou um período conturbado e trágico de sua vida durante o governo nazista na Alemanha, quando sentiu que era seu dever permanecer em seu país, mas era abertamente contrário a algumas das políticas do Governo, principalmente quanto à perseguição dos judeus. Nas últimas semanas da guerra sofreu grandes dificuldades após a sua casa ter sido destruída por um bombardeio.
Era venerado pelos seus colegas, não só pela importância de suas descobertas, mas também por suas qualidades pessoais. Foi um pianista talentoso, daí ter cogitado seguir carreira como músico durante a juventude.
Planck foi casado duas vezes. Após a sua nomeação, em 1885, para Professor Associado em sua cidade natal Kiel casou-se com uma amiga de infância, Marie Merck.

14.120 – História da Eletrônica – O Tubo de Raios Catódicos


tubo
Um tubo de raios catódicos ou cinescópio (também conhecido pelo acrónimo CRT, derivado da expressão inglesa cathode ray tube) é um tipo de válvula termiônica contendo um ou mais canhões de elétrons e um ecrã fluorescente utilizado para ver imagens. Seu uso se dá principalmente em monitores de computadores e televisores (cinescópios de deflexão eletromagnética) e osciloscópios (cinescópios de deflexão eletrostática). Foi inventado por Karl Ferdinand Braun em 1897.
Foi em um tubo de raios catódicos que, em 1897, o físico J. J. Thomson verificou a existência do elétron.
As primeiras experiências com raios catódicos são creditadas a J. J. Thomson, físico inglês que, em seus três famosos experimentos, conseguiu observar a deflexão eletrostática, uma das funções fundamentais dos tubos de raios catódicos modernos. A primeira versão do tubo de raios catódicos foi inventada pelo físico alemão Ferdinand Braun em 1897, tendo ficado conhecida como tubo de Braun.
EM 1907, o cientista russo Boris Rosing usou um tubo de raios catódicos na extremidade receptora de um sinal experimental de vídeo para formar uma imagem. Ele conduziu o experimento para mostrar formas geométricas simples na tela. Foi a primeira vez em que a tecnologia de tubo de raios catódicos foi usada para o que agora conhecemos como televisão.
O primeiro tubo de raios catódicos a usar cátodos quentes foi desenvolvido por John B. Johnson e Harry Weiner Weinhart, da Western Electric, tendo se tornado um produto comercial em 1922.[citation needed]
O primeiro televisor comercializado com tubo de raios catódicos foi fabricado pela Telefunken, na Alemanha, em 1934.
A máscara de sombra, formada por uma chapa de aço com cerca de 150 micros de espessura e com cerca de 350 mil furos é conformada em uma fôrma convexa em prensas, lavada e passa por um processo de enegrecimento. Esta chapa é fixada em um anel metálico para dar rigidez e que é fixado à tela por molas.
A camada fotossensível (camada de fósforo) é aplicada na parte interna da tela usando um processo fotoquímico. O primeiro passo é um pré-tratamento da superfície seguido do recobrimento com uma suspensão de fósforo verde. Depois de seca, a máscara é inserida na tela e o conjunto é exposto a uma luz UV que reage na parte exposta pelos furos da máscara. Os raios de luz são emitidos de tal forma que as linhas de fósforo estejam no mesmo ponto que o feixe de elétrons colidirá. Então a máscara é removida da tela e a área não exposta à luz é lavada. Nas áreas que foi exposta, o fósforo adere à tela como resultado de uma reação fotossensível. Na sequência as outras duas cores (azul e vermelho) seguem no mesmo processo.
Para os tubos que utilizam a tecnologia de matriz, linhas de grafite são colocadas entre as linhas de fósforos antes do processo Flowcoating em um processo similar chamado de processo Matrix.
Toda a região da tela é coberta posteriormente com uma camada de alumínio, este alumínio conduz os elétrons e também reflete a luz emitida para trás (efeito espelho).
Em paralelo ao Processamento de Telas, a parte interna do cone de vidro foi recoberta com uma camada de material condutivo. Uma pasta de esmalte é aplicada à borda do cone que após o forno se funde com a tela. A partir do forno o cone e a combinação tela/máscara, incluindo o cone metálico que serve de blindagem magnética, são fundidos no esmalte em alta temperatura.
O canhão eletrônico é inserido e selado no pescoço do cone, o vácuo é formado no interior do bulbo, o qual em seguida é fechado. Neste momento o bulbo se torna um tubo. Um “getter” (elemento químico com alta capacidade de combinação com gases não inertes), montado em uma fase anterior do processo, é evaporado por meio de aquecimento com alta frequência, para que se combine com possíveis átomos residuais de gases, através de reações químicas.
A parte externa do cone do cinescópio é recoberta por uma camada condutiva e uma cinta metálica é colocada na borda do painel através de um processo que envolve o aquecimento da cinta, a sua aplicação à borda do painel, seu resfriamento e consequente contração, para proteger o tubo contra possíveis riscos de implosão.
Alguns cinescópios, dependendo do modelo e fabricante podem possuir metais nobres e até valiosos, tal como paládio, platina e eventualmente ouro, além de terras raras, algumas delas inclusive com pequeno potencial radioativo. Miligramas ou mesmo gramas desses metais e terras raras podem ser encontrados nos catodos e nas grades de difusão ou máscaras.
Dependendo de estudos de viabilidade, a extração desses metais pode compensar o custo de tratamento do descarte e da reciclagem, como já ocorre com os chips recobertos por filmes de ouro e entre outros, determinados conectores e soquetes utilizados em placas de circuito impresso, contatos de relés e etc.
Existem ainda alguns tubos de altíssima luminosidade que podem, apesar de não ser absolutamente certo isso – por estar entre os segredos de fabricação (vide referências) – conter diminutas quantidades de material radioativo pesado, tal como o tório, utilizado no endurecimento e aumento de resistência ao calor dos componentes do canhão eletrônico, tornando o negócio de reciclagem no mínimo desaconselhável para leigos e no pior caso exigindo inclusive disposição especial em áreas especialmente preparadas para recebê-los, para evitar graves contaminações, possivelmente cumulativas, no meio ambiente.
Lembrando que, ainda hoje no Brasil e em outros países, dispositivos mais simples tecnologicamente, mas submetidos a grande calor durante a operação, tal como “camisas de lampião”, são banhadas em material radioativo para permitir às cerdas das mesmas atingirem altas temperaturas sem romperem-se facilmente – o mesmo principio de tratamento por tório, costumava ser utilizado nos cátodos de alguns cinescópios.
Já os televisores mais antigos, aqueles com válvulas termiônicas, contêm algumas delas com cátodos compostos com terras raras, porém em diminutas quantidades. Apesar de encontrarem-se diversas dessas válvulas eletrônicas com informações relativas ao uso de terras raras radioativas nos cátodos, não se sabe exatamente se possuem ou não radioatividade inerente suficiente para causar danos, porém nos recicladores o contato constante com esses materiais poderá ser mais um fator para que não sejam reciclados em ambientes não controlados.
O que torna o assunto da reciclagem de componentes eletrônicos e válvulas termiônicas algo um tanto delicado e que exigiria sempre a presença de um técnico especializado para avaliar o impacto ao meio ambiente e para realizar o descarte seguro desses componentes.
Aparelhos antigos podem conter maior quantidade desses componentes.
Seria irresponsável dizer às pessoas que simplesmente os atirem ao lixo, mas também é irresponsável dizer que leigos poderiam cuidar desse assunto – mesmo descartando-os em Ecopontos como os muitos mantidos pela prefeitura em grandes cidades de São Paulo.

14.103 – Como se formam os raios?


raios
Para que surjam raios, é necessário que, além das gotas de chuva, as nuvens de tempestade tenham em seu interior três ingredientes: cristais de gelo, água quase congelada e granizo. Tais elementos se formam na faixa entre 2 e 10 quilômetros de altitude, onde a temperatura fica entre 0 ºC e -50 ºC. Com o ar revolto no interior da nuvem, esses elementos são lançados pra lá e pra cá, chocando-se uns contra os outros. Com isso, acabam trocando carga elétrica entre si: alguns vão ficando cada vez mais positivos, e outros, mais negativos. Os mais pesados, como o granizo e as gotas de chuva, tendem a ficar negativos.

Por causa da gravidade, o granizo e as gotas de chuva se acumulam na parte de baixo, que vai concentrando carga negativa. Mais leves, os cristais de gelo e a água quase congelada são levados por correntes de ar para cima, deixando o topo mais positivo. Começa a se formar um campo elétrico, como se a nuvem fosse uma grande pilha.
Essa dupla polaridade da nuvem é reforçada ainda por dois fenômenos físicos externos a ela. Acima, na região da ionosfera, os raios solares interagem com moléculas de ar, formando mais íons negativos. No solo, por outro lado, diversos fatores contribuem para que a superfície fique eletricamente positiva. Essa polarização da nuvem cria um campo elétrico descomunal: se as redes de alta tensão têm cerca de 10 mil W (watts) de potência, no céu nublado a coisa chega a 1000 GW (gigawatts)! Tamanha tensão começa a ionizar o ar em volta da nuvem – ou seja, ele passa de gás para plasma, o chamado quarto estado da matéria.

Começa então a se formar um caminho de plasma em direção ao solo. Por ter elétrons livres, o plasma é um bom condutor de eletricidade. Com isso, acaba fazendo a ponte até a superfície para que a tensão da nuvem possa ser descarregada. Enquanto o tronco principal desce rumo ao solo, surgem novos ramos tentando abrir passagem.
Quando um tronco principal está próximo do solo, começa a surgir uma massa de plasma na superfície. Essa massa vai subir até se conectar com o veio que desce e, então, fechar o circuito. É por isso que, se alguém estiver perto de onde o fenômeno está rolando, vai perceber os pelos do corpo se eriçando. Quando o caminho se fecha, rola uma troca de cargas entre a superfície e a nuvem e – zap! – temos o relâmpago. A espetacular faísca é fruto do aquecimento do ar, enquanto o ribombar do trovão vem da rápida expansão da camada de ar. Do surgimento do tronco de plasma até rolar o corisco, se passa apenas cerca de 0,1 segundo.
É verdade que um raio não cai duas vezes no mesmo lugar?

Não, isso é mito. Quando o tronco principal de um raio alcança o solo, todas as suas ramificações tentam usar esse caminho aberto e, às vezes, caem no local exato do primeiro relâmpago. Já foram observadas até 32 descargas no mesmo lugar!

Pessoas com metais no corpo têm mais chances de serem atingidas?
Outra lorota. Os metais que porventura trazemos no corpo – como próteses, pinos e aparelho dentário – são muito pequenos para que o raio os considere como um atalho para o solo. Agora, árvores, sim, são bons atalhos. Ou seja, não fique perto de uma durante um toró!

É perigoso nadar durante uma tempestade?
Sim, pois a água conduz bem a eletricidade. Se você estiver no mar e um raio cair a menos de 50 metros, você tem grande risco de receber toda a força da descarga. Em piscinas é ainda pior, pois o choque também pode chegar pelas tubulações metálicas

O que acontece quando é alguém é atingido?
Se o raio cair exatamente em cima do sujeito, é quase certo que ele seja reduzido a um toquinho carbonizado: o corisco gera um aquecimento de quase 30 mil graus Celsius! Caso ele caia a até 50 metros de distância, é grande o risco de rolar parada cardíaca e queimaduras.

É perigoso falar ao telefone durante um temporal?
Se for um telefone com fio, é. Assim como um raio pode atingir um poste e se propagar pela fiação elétrica da casa, queimando eletrodomésticos, ele pode viajar pela linha telefônica até fritar a orelha da pessoa. Telefones sem fio e celulares não correm esse risco.

14.093 – Audiotecnologia – Como Funciona um Alto Falante


alto falantes 1
Graças aos nossos ouvidos conseguimos ouvir sons produzidos por diversos dispositivos como buzinas, campainhas, bumbos, alto-falantes, etc. Os alto-falantes hoje estão em diversos aparelhos eletrônicos, sendo muito utilizados para incrementar carros de sons, como mostra a figura acima.
Podemos simplificar a definição de alto-falantes como sendo componentes que transformam sinais elétricos de uma corrente elétrica em oscilações de pressão no ar, em forma de onda sonora. Caso observemos bem de perto um alto-falante, poderemos verificar que seus componentes básicos são um ímã permanente, preso na armação do alto-falante, e uma bobina móvel, que está fixa no cone de papel.
Quando aplicamos uma corrente elétrica variável na bobina, esta é repelida ou atraída pelo campo magnético do ímã permanente. Desta forma, o conjunto bobina-cone é movido para frente e para trás, empurrando o ar em sua volta, criando uma onda de compressão e rarefação no ar, ou seja, uma onda sonora.
Por exemplo, aplicando uma corrente oscilante de 440 Hz na bobina, o cone do alto-falante vai se mover para frente e para trás com esta mesma frequência, produzindo uma onda sonora de 440 Hz.
A bobina, presa ao cone, é movida para frente e para trás por meio da força magnética, quando ela é percorrida por uma corrente elétrica.

14.056 – A Antigravidade


detector alfa
Um dos fatos mais surpreendentes sobre a ciência é como são aplicáveis universalmente as leis da natureza. Cada partícula obedece as mesmas regras, experimenta as mesmas forças e vê as mesmas constantes fundamentais, não importando onde ou quando elas existam. Gravitacionalmente, todas as entidades do universo experimentam, dependendo de como você as vê, ou a mesma aceleração gravitacional ou a mesma curvatura do espaço-tempo, não importando as propriedades que possui.
Pelo menos, é como as coisas são na teoria. Para o astrofísico Ethan Siegel, fundador e escritor de Starts With A Bang, na prática, algumas coisas são notoriamente difíceis de medir. Fótons e partículas normais e estáveis caem como esperado em um campo gravitacional, com a Terra fazendo com que qualquer partícula massiva acelere em direção ao seu centro a 9,8 m / s 2 . Apesar de nossos melhores esforços, nunca medimos a aceleração gravitacional da antimatéria. Deveria acelerar exatamente da mesma maneira, mas até medirmos isso, não podemos saber.
Um experimento está tentando decidir o assunto, de uma vez por todas. Dependendo do que encontrar, pode ser a chave para uma revolução científica e tecnológica. Se quisermos saber como a antimatéria se comporta gravitacionalmente, não podemos simplesmente sair do que teoricamente esperamos ; temos que medir isso. Felizmente, há um experimento em execução agora que foi projetado para fazer exatamente isso: o experimento ALPHA no CERN .
A colaboração ALPHA foi a mais próxima de qualquer experimento a medir o comportamento da antimatéria neutra em um campo gravitacional. Com o próximo detector ALPHA-g, poderemos finalmente saber a resposta. Crédito: Maximiniel Brice/CERN)
Um dos grandes avanços que foram dados recentemente é a criação não apenas de partículas de antimatéria, mas estados neutros e estáveis do mesmo. Antiprótons e pósitrons (antielétrons) podem ser criados, desacelerados e forçados a interagir uns com os outros, onde formam um anti-hidrogênio neutro. Usando uma combinação de campos elétricos e magnéticos, podemos confinar esses antiátomos e mantê-los estáveis, longe do assunto que os faria aniquilar.
O novo detector ALPHA-g, construído na instalação Triunf do Canadá e enviado ao CERN no início deste ano, deve melhorar os limites da aceleração gravitacional da antimatéria até o limiar crítico. Do ponto de vista teórico e de aplicação, qualquer resultado que não os esperados +9,8 m/s2 seria absolutamente revolucionário. A contraparte da antimatéria de todas as partículas de matéria deve ter: a mesma massa, a mesma aceleração em um campo gravitacional, a carga elétrica oposta, a rotação oposta, as mesmas propriedades magnéticas, deve se unir da mesma forma em átomos, moléculas e estruturas maiores e deve ter o mesmo espectro de transições de positrons nessas variadas configurações.
Alguns destes foram medidos por um longo tempo: massa inercial da antimatéria, carga elétrica, spin e propriedades magnéticas são bem conhecidos. Suas propriedades de ligação e transição foram medidas por outros detectores no experimento ALPHA e se alinham com o que a física de partículas prevê. Mas se a aceleração gravitacional voltar negativa em vez de positiva, literalmente viraria o mundo de cabeça para baixo.
(O detector ALPHA-g, construído na instalação de aceleração de partículas do Canadá, TRIUMF, é o primeiro de seu tipo projetado para medir o efeito da gravidade na antimatéria. Quando orientado verticalmente, deve ser capaz de medir em qual direção a antimatéria cai e em qual magnitude. Crédito: Stu Shepherd/ Triumf)
Atualmente, não existe tal coisa como um condutor gravitacional. Em um condutor elétrico, cargas livres vivem na superfície e podem se mover, redistribuindo-se em resposta a quaisquer outras cargas ao redor. Se você tiver uma carga elétrica fora de um condutor elétrico, o interior do condutor será protegido dessa fonte elétrica.
Mas não há como se proteger da força gravitacional. Não há como montar um campo gravitacional uniforme em uma região do espaço, como você pode fazer entre as placas paralelas de um capacitor elétrico. O motivo? Porque ao contrário da força elétrica, que é gerada por cargas positivas e negativas, há apenas um tipo de “carga gravitacional”, e isso é massa e energia. A força gravitacional é sempre atraente e simplesmente não há maneira de contornar isso.
Mas se você tem massa gravitacional negativa, tudo isso muda. Se a antimatéria realmente se torna antigravitacional, caindo em vez de cair, então a gravidade a vê como se fosse feita de antimassa ou antienergia. Sob as leis da física que atualmente entendemos, quantidades como antimassa ou antienergia não existem. Podemos imaginá-los e falar sobre como eles se comportariam, mas esperamos que a antimatéria tenha massa normal e energia normal quando se trata de gravidade.
(A ferramenta Virtual IronBird para o Centrifuge Accommodation Module é uma maneira de criar gravidade artificial, mas requer muita energia e permite apenas um tipo específico de força de busca de centro. A verdadeira gravidade artificial exigiria que algo se comportasse com massa negativa. Crédito: NASA/AMES)
Se antimassa existe, no entanto, uma série de grandes avanços tecnológicos, imaginados por escritores de ficção científica por gerações, de repente se tornariam fisicamente possíveis. Podemos construir um condutor gravitacional e nos proteger da força gravitacional. Podemos montar um capacitor gravitacional no espaço, criando um campo de gravidade artificial uniforme. Poderíamos até mesmo criar um drive de dobra, já que teríamos a capacidade de deformar o espaço-tempo exatamente da maneira que uma solução matemática para a Relatividade Geral, descoberta por Miguel Alcubierre em 1994, exige.
É uma possibilidade incrível, que é considerada altamente improvável por praticamente todos os físicos teóricos. Mas não importa quão selvagens ou domesticadas sejam suas teorias, você deve confrontá-las com dados experimentais; somente medindo o Universo e colocando-o à prova, você pode determinar com precisão como as leis da natureza funcionam.

14.001 – Física – A Teoria do Multiverso


É um termo usado para descrever o conjunto hipotético de universos possíveis, incluindo o universo em que vivemos. Juntos, esses universos compreendem tudo o que existe: a totalidade do espaço, do tempo, da matéria, da energia e das leis e constantes físicas que os descrevem. É geralmente usado em enredos de ficção científica, mas também é uma extrapolação possível de algumas teorias científicas para descrever um grupo de universos que estão relacionados, os denominados universos paralelos. A ideia de que o universo que se pode observar é só uma parte da realidade física deu luz à definição do conceito “multiverso”.
O conceito de Multiverso tem suas raízes em extrapolações, até o momento não científicas, da moderna Cosmologia e na Teoria Quântica, e engloba também várias ideias oriundas da Teoria da Relatividade de modo a configurar um cenário em que pode ser possível a existência de inúmeros Universos onde, em escala global, todas as probabilidades e combinações ocorrem em algum dos universos. Simplesmente por haver espaço suficiente para acoplar outros universos numa estrutura dimensional maior: o chamado Multiverso.

Os universos seriam, em uma analogia, semelhantes a bolhas de sabão flutuando num espaço maior capaz de abrigá-las. Alguns seriam até mesmo interconectados entre si por buracos negros ou de buracos de minhoca.

Em termos de interpretações da Mecânica Quântica, que, ao contrário da Mecânica Quântica em si, não são cientificamente estabelecidas, a Interpretação de Vários Mundos fornece uma visão que implica um multiverso. Nessa visão, toda vez que uma decisão quântica tem de ser tomada – em termos técnicos, toda vez que há uma redução da função de onda de um estado emaranhado – dois ou mais universos independentes e isolados surgem, um para cada opção quântica possível. Vivemos no universo no qual as decisões quânticas adequadas levam à nossa existência.

Devido ao fato da conjectura de multiverso ser essencialmente ideológica, não havendo, atualmente, qualquer tipo de prova tecnicamente real, a “teoria dos universos paralelos” ou “multiverso” é em essência uma teoria não científica. Nesse ponto, aliada à completa ausência de evidência científica, há ainda a questão concernente à compatibilidade com as teorias científicas já estabelecidas e os rumos diretamente apontados por essas. No conceito de multiverso, imagina-se um esquema em que todas os universos agregavam-se mutuamente por uma infinita vastidão. Tal conceito de Multiverso implica numa contradição em relação à atual busca pela Teoria do Campo Unificado ou pela Teoria do Tudo, uma vez que em cada Universo pode-se imaginar que haja diferentes Leis Físicas.
Em 1952, Erwin Schrödinger deu uma palestra, em Dublin, onde avisou com entusiasmo a audiência que o que estava prestes a enunciar poderia parecer “lunático”. Ele disse que, quando suas equações Nobel pareciam descrever várias histórias diferentes, estas não eram “alternativas, mas que tudo realmente acontece simultaneamente”. Esta é a primeira referência conhecida ao multiverso.
O multiverso inflacionário é composto de vários bolsos em que os campos de inflação se desmoronam e formam novos universos.
A versão membrana do multiverso postula que todo o nosso universo existe em uma membrana (brane) que flutua em uma maior dimensão. Neste volume, existem outras membranas com seus próprios universos. Esses universos podem interagir uns com os outros, e quando colidem, a violência e a energia produzida são mais do que suficientes para dar origem a um big bang. As membranas flutuam ou se aproximam uma da outro, e a cada poucos trilhões de anos, atraídas pela gravidade ou por alguma outra força que não entendemos, colidem. Este contato repetido dá origem a explosões múltiplas ou “cíclicas”. Esta hipótese particular cai sob o guarda-chuva da teoria das cordas, pois exige dimensões espaciais extras.
As diferentes teorias de Multiverso são por muitos utilizadas para contraposição à ideia do Design Inteligente e seu Argumento da Improbabilidade ou Argumento do Universo Bem Ajustado. Ou seja, são utilizadas por muitos como explicação para a pré-assumida “improbabilidade estatística” das leis da física e das constantes físicas fundamentais serem “tão bem ajustadas” para permitirem a construção do universo tal qual o conhecemos; em particular um universo capaz de abrigar vida inteligente com habilidade de indagar sobre a história do próprio universo em que existe.
Tal argumentação é comum em discussões envolvendo os defensores da existência de um “projetista inteligente” e os defensores de sua inexistência, defensores últimos que buscam uma resposta alternativa à questão decorrente da inexistência do projetista onipotente para o universo através da extrapolação das regras científicas encerradas na teoria da evolução biológica ao restante do universo, contudo sem as pertinentes considerações, o que leva à ideia do multiverso como resposta às estipuladas “particularidades” de nosso universo defendidas pela outra ala. O uso de tal linha de raciocínio e resposta é contudo desaconselhado sem acompanhamento dos devidos rigores, e especificamente falho no caso do multiverso. Ele falha essencialmente por desconsiderar que a existência do multiverso não é cientificamente estabelecida, consistindo o argumento por tal apenas em se trocar uma crença por outra; a crença do “projetista inteligente” pela crença do “multiverso”.

Argumento contra
Para começar, como é que a existência dos outros universos deve ser testada? Com certeza, todos os cosmólogos aceitam que existem algumas regiões do universo que se encontram fora do alcance de nossos telescópios, mas, em algum lugar na inclinação escorregadia entre isso e a ideia de que há um número infinito de universos, a credibilidade atinge um limite. À medida que um desliza abaixo dessa inclinação, mais e mais deve ser aceito na fé e cada vez menos está aberto à verificação científica. As explicações multiversas extremas são, portanto, remanescentes das discussões teológicas. Na verdade, invocar uma infinidade de universos invisíveis para explicar as características incomuns da que vemos é tão ad hoc quanto invocar um Criador invisível. A teoria do multiverso pode ser vestida em linguagem científica, mas, em essência, requer o mesmo salto de fé.

– Paul Davies, “A Brief History of the Multiverse”
Cético como sou, penso que a contemplação do multiverso é uma excelente oportunidade para refletir sobre a natureza da ciência e sobre a natureza final da existência: por que estamos aqui …. Ao olhar para esse conceito, precisamos ter a mente aberta, mas não tanto. É um caminho delicado para andar. Os universos paralelos podem ou não existir; O caso não está provado. Vamos ter que viver com essa incerteza. Nada está errado com a especulação filosófica cientificamente baseada, que é o que são as propostas multiversas. Mas devemos nomeá-lo pelo que é.

– George Ellis, Scientific American, “Does the Multiverse Really Exist?”

13.999 – Mecânica quântica e universos paralelos – a física de “Vingadores: Ultimato”


Em Vingadores, por outro lado, toda vez que o passado é alterado, surge um universo paralelo em que tudo ocorre de maneira diferente graças a essa alteração. Esse mecanismo – diferente do adotado por J.K. Rowling e Robert Zemeckis – não deriva da física clássica de Einstein, e sim, como já mencionado, da física quântica, da qual o próprio Einstein duvidou.
Para entender esse mecanismo, imagine que uma personagem que acabamos de inventar, a Ana, se arrependeu de começar um namoro com Gabriel e quer voltar no tempo para impedir si própria de conhecê-lo. Ela pretende furar o pneu do ônibus que Gabriel pegou para ir à faculdade naquela fatídica tarde de 2014. Assim, eles nunca teriam formado uma dupla na aula.
Se o plano desse certo no mundo de De Volta para o Futuro, assim que Ana retornasse a 2019, veria sua vida completamente mudada. No mundo de Harry Potter, por outro lado, o plano não daria certo: Ana descobriria que, naquela dia, o pneu furado foi justamente o que fez com que Gabriel chegasse um pouco atrasado à aula – e fosse obrigado a formar dupla com ela em vez de escolher um amigo próximo.
Já na perspectiva quântica, Ana teria inaugurado um novo universo. Uma realidade paralela em que ela de fato não viveu com Gabriel – enquanto o outro universo, em que o namoro segue normalmente, continua existindo. Parece maluquice – é maluquice –, mas é uma consequência da maneira como o físico americano Hugh Everett III interpretou as equações de Niels Bohr (sim, o da sua aula de química) e Erwin Schrödinger (sim, o do gato). Calma que a gente explica.

O que é física quântica, afinal?
Ela é a única teoria que descreve de maneira bem sucedida o comportamento de átomos e das partículas menores que átomos – os quarks e elétrons que compõem os átomos, por exemplo, ou os fótons, as partículas que perfazem a luz. Se você tentar usar as equações da Relatividade de Einstein para explicar o que um elétron está fazendo, não vai dar certo. O mundo das coisas pequenas é inacessível às equações do alemão.
Isso porque é impossível determinar a posição de um elétron. O melhor que você pode fazer é criar uma espécie de gráfico que demonstra onde há maior ou menor probabilidade deste elétron estar em um determinado momento. A equação que gera essa gráfico foi a grande sacada de Erwin Schrödinger.
Essa é uma noção muito estranha, pois nada, na nossa experiência cotidiana, pode estar em dois lugares ao mesmo tempo. Se você está em casa, a probabilidade de que você esteja em casa é 100%, e de que você esteja fora de casa, 0%. Não dá para estar meio grávida, não dá para cometer meia infração de trânsito, não dá para estar 50% na cama e 50% no mercado.
Isso é tão verdade que até as próprias partículas concordam: quando você tenta estabelecer a posição de um elétron, ele imediatamente abandona sua incerteza e se manifesta em um lugar só. O gráfico, antes tão irregular, atinge 100% de garantia. Dureza: o mundo, na escala quântica, passa a perna nos cientistas. Quem descobriu que o elétron se nega a manifestar sua estranheza foi o dinamarquês Niels Bohr.
O que Everett concluiu foi: de fato, é extremamente tosco supor que um elétron esteja em dois lugares ao mesmo tempo, ou que o observador veja a partícula em vários lugares ao mesmo tempo. Mas não é tão tosco assim pressupor que existem vários universos, e que cada um deles contêm o elétron em uma das posições possíveis. Ou seja: o Gato de Schrödinger está vivo em um universo, e morto em outro. Acabou o paradoxo.
Mais recentemente, um físico chamado David Deutsch juntou algumas possibilidades de viagem no tempo quântica com a ideia do multiverso – gerando um cenário teórico mais ou menos parecido com o do filme. E é esse o Deutsch mencionado por Tony Stark no começo do filme.