14.061 – Biologia e Paleontologia – Como Surgiram as Aves?


Archaeopteryx_lithographica_Fossil-363x450
Dentre as diversas teorias acerca da origem das aves, a mais aceita e difundida hoje é que esses animais evoluíram a partir de algumas espécies de dinossauros. Esta teoria foi fundamentada na descoberta de um fóssil de dinossauro em 1861 na Alemanha cuja presença de penas chamou atenção. O fóssil foi chamado de Archaeopteryx lithographica (asa antiga), sendo classificado como a ave mais primitiva e considerado como um fóssil de transição entre répteis e aves. As impressões das penas no substrato fóssil são bem claras e exibem uma diferenciação das penas em rêmiges primárias e secundária, disposição igual à das aves atuais, o que sugere que a Archaeopteryx teria capacidade de realizar voo batido. Mesmo assim a evolução das penas, do voo e das aves em si podem não estar relacionadas. Apesar do aparecimento das penas em dinossauros, o voo batido, por exemplo, evoluiu em três grupos diferentes de vertebrados: os pterossauros, as aves e os morcegos.
Antes mesmo do Archaeopteryx, alguns dinossauros apresentavam alguns tipos de plumagens primitivas que eram diferentes das penas das aves modernas ou daquelas apresentadas pelo Archaeopteryx. Tal descoberta levantou a hipótese de que as penas podem ter surgido primeiramente para outras funções além do voo. Alguns pesquisadores defendem a ideia de que as penas teriam surgido a partir de seleção sexual, como adornos selecionados pelas fêmeas. Apesar de ser uma teoria plausível, não seria suficiente para, isoladamente, ter forçado o surgimento de penas muito maiores, pois caracteres sexuais geralmente ocorrem somente nos machos ou de forma discreta nas fêmeas. Há ainda a possibilidade das penas terem conferido outras vantagens adaptativas, como um melhor controle da temperatura corpórea.

Quanto à evolução do voo em si, pode-se apontar duas principais teorias: teoria “chão-ar” e teoria “árvore-ar”. No primeiro caso, os animais teriam começado a voar a partir do solo através de corridas ou impulsos. Na segunda teoria o voo teria acontecido quando animais arborícolas realizavam pulos nas copas das árvores e usavam as penas para planar durante os saltos. Apesar da segunda teoria parecer mais palpável por ter menos resistência da força da gravidade, não há evidências de organismos intermediários entre o voo planado e o voo batido (em que há gasto energético), o que pode sugerir que o voo batido não teve sua origem no voo planado. Por outro lado, estudos demonstram que as asas do fóssil Archaeopteryx seriam capazes de gerar um impulso suficiente para fazê-lo voar, já que a força do impulso seria perpendicular à gravidade e não contra ela. O fato é que ambas as teorias deixam lacunas em aberto e abrem espaço para novos e modernos estudos que se propõem a esclarecer completamente a origem do voo e consequentemente das aves.

13.860 – Dinossauros – Eles Estão Entre Nós


dino ave
Uma vez por ano o paleontólogo americano Mark Norell troca o conforto do Museu de História Natural de Nova York, com sua privilegiada vista do Central Park, por uma temporada de dois meses no hostil Deserto de Gobi, na Mongólia. Ali, com a ajuda de pesquisadores da Academia de Ciências da Mongólia, ele procura, desde 1990, fósseis de dinossauros, sua grande paixão e principal atração do museu onde trabalha, e de outros animais igualmente antigos. O sacrifício valeu a pena: em abril passado, Norell apresentou ao mundo o resultado desse trabalho, um quase completo exemplar de um pequeno dinossauro, ainda desconhecido, que na pia batismal recebeu o nome grego de Mononychus, devido a uma singular característica: a garra única dos membros anteriores.

O Mononychus integra o grupo dos celurossauros, tem 75 milhões de anos e sua descoberta causou alvoroço muito além das fronteiras da província científica — a revista Time, por exemplo, dedicou-lhe nada menos que o artigo de capa da edição de 26 de abril. Não poderia ser de outra forma: bípede, pedacinhos afiados de dentes, pescoço e cauda compridos, longas pernas boas para correr, muito a propósito do tamanho de um peru, a descoberta reaqueceu o debate em torno de uma velha — e jamais decidida — questão da Paleontologia: seriam as aves modernas descendentes dos dinossauros? Somado a outras evidências que se acumulam sobretudo a partir da década passada, o achado de Norell aponta para uma conclusão: anatomicamente, as aves pertencem à árvore genealógica dos dinossauros.
O Mononychus não tinha asas nem evidências de penas, ao contrário do arqueoptérix — que, no entanto, não se pode garantir tenha sido um animal voador. Porém, possui outras características pouco tradicionais para um dinossauro e muito próximas das aves modernas, tais como a quilha no osso esterno, isto é, uma estrutura muito reforçada nesse osso, que serve de apoio aos músculos peitorais (os que auxiliam no vôo) e ossos pélvicos muito unidos e alongados.
Na verdade, essa é uma das correntes que tentam explicar a evolução das aves. A outra, alternativa mas não oposta, sustenta que dinossauros e aves têm um ancestral comum — o tecodonte, um réptil muito variável, às vezes bípede, outras vezes quadrúpede. Para essa corrente, muitas semelhanças aproximam as aves dos celurossauros, levando à suposição de que ambos evoluíram paralelamente. Tais teorias não chegam a ser exatamente uma novidade, estão na pauta dos especialistas desde o século XIX, e são reavivadas a cada nova evidência que aparece. O Mononychus parece ser a mais importante dos últimos tempos.
Os tiranossauros, velociraptors, alossauros e cia. estão por aí. A diferença é que agora eles atendem por nomes menos glamourosos – pintassilgo, tico-tico, galinha caipira, pato, pombo… Das quase 10 mil espécies de aves que existem, todas são descendentes diretas dos dinossauros. O parentesco entre os dois é um fato bem conhecido da biologia. A diferença é que, agora, começam a surgir evidências de que a relação entre os penosos e os escamosos é bem mais estreita. A começar pelas penas. Em 2012 por exemplo, paleontólogos alemães encontraram um indício de que boa parte dos dinossauros tinha penas. E bico. Conheça agora as características que as aves herdaram de seus avós, as criaturas mais fascinantes que já pisaram sobre a Terra.
Pescoço em “S”
Uma diferença marcante entre dinossauros e crocodilos, por exemplo, é que só os primeiros têm pescoço em forma de “S” – justamente uma característica das aves. Ela provavelmente evoluiu nos primeiros dinossauros como uma adaptação para ampliar o campo de visão (igual o bipedismo – seja nos dinos, seja nos homens). E o resultado foi o pescoço esguio. Os cisnes agradecem.

Instinto maternal
Tartarugas são péssimas mães. Botam os ovos e tchau: a filhotada que se cuide depois. Até pouco tempo atrás o consenso era que os dinossauros também se comportavam desta maneira, digamos, reptiliana. Mas não. Hoje sabemos que vários deles faziam como os pássaros: eram pais exemplares, que construíam ninhos e cuidavam dos filhotes. É o caso deste dino-ave aqui ao lado, o citipati, cujo fóssil mostra o bicho chocando ovos.

Bico
Nós usamos as mãos para cavar. Então desenvolvemos unhas (com os cachorros aconteceu a mesma coisa). Outros usam a boca para cavar, então desenvolveram unhas. Na cara. O bico é um par de unhas facial. Essa proteção evoluiu em alguns dinossauros, e desse grupo passou para todas as aves. Um dos dinos bicudos era o Citipati. Mas alguns pesquisadores acreditam que até grandes carnívoros, como o tiranossauro, tivessem alguma espécie de bico, ainda que dentado.
Pés de passarinho
Responda em um segundo, valendo um milhão de reais: os pés de um dinossauro pareciam mais com: a) os de um crocodilo; b) os de um periquito. Pois é: a certa é a alternativa B. O grupo de dinossauros que deu origem às aves, os terópodes (dos quais faz parte o glorioso tiranossauro), já tinha pés de passarinho, com três dedos para frente e um para trás – dedo extra que os pombos usam para se empoleirar nos fios elétricos.

Ossos pneumáticos
Os terópodes, ramo dos dinossauros mais próximos das aves, e que inclui o tiranossauro, têm ossos pneumáticos, ou seja, com câmaras internas cheias de ar, como as aves modernas (e pneus!). É uma característica essencial para o voo. Mas claro: tiranossauros não voavam – os ossos pneumáticos deixavam o gigante mais leve e ágil.

“Osso da sorte”
Cada um pega de um lado do ossinho. E quem ficar com o pedaço maior ganha. É o “osso da sorte” – brinquedo que as galinhas forneciam para as crianças na era pré-videogame. Ele é formado pela fusão das duas clavículas e ajuda na sustentação dos ossos do tórax durante o voo. Mas também era encontrado em vários dinossauros, como o aerosteon aqui.

Sacos aéreos
Aves não têm sistema respiratório – têm um metrô respiratório. O ar circula por uma rede intrincada de canais ligando reservatórios de ar. São os sacos aéreos. Eles mantêm os pulmões sempre cheios, mesmo quando a ave expira. Isso confere um poder invejável de respiração – e possibilita às aves voar a altitudes rarefeitas. Mas tudo começou aqui no chão, para ajudar certos dinos a correr mais.

Punhos articulados
A articulação do punho das aves de hoje permite uma ampla movimentação das asas. Alguns dinossauros tinham essa mesma característica – caso dos maniraptores. O nome disso na biologia é “exaptação”: o uso de uma estrutura antiga para uma função nova (igual aconteceu com os sacos aéreos e com as penas). Nos dinos, o punho articulado só servia para deixar as mãos mais ágeis.

Penas
Já encontraram dezenas de dinossauros penosos – a maior parte do grupo dos coelurosaurus, que inclui de tiranossauros a dinos voadores. Mas o achado mais recente, o Sciurumimus, desenterrado em julho, na Alemanha, é uma exceção: pertence ao grupo dos megalosauros, um ramo bem diferente. Isso sugere que o ancestral comum entre os dois grupos podia ter penas – e mais: que todos os dinossauros talvez tenham tido pelo menos algum tipo de penugem. A função? A mesma que os pelos têm nos mamíferos: regular a temperatura.

galinhassauro

 

13.817 – Quais foram os Primeiros Primatas?


cranio humano
A busca pelas origens do homem nos leva até o surgimento dos primeiros primatas, há 70 milhões de anos. Só que nessa época nossos parentes se pareciam mais com ratos do que com os atuais macacos.
Elo ainda perdido
Quando a teoria de Charles Darwin foi confirmada, uma idéia rapidamente se difundiu: de que haveria um elo perdido entrehomens e macacos. Uma espécie intermediária, da qual os dois se teriam desenvolvido. Hoje, os cientistas acreditam que a história não é tão simples assim: homens e macacos provavelmente se desenvolveram paralelamente, a partir de outras espécies de primatas. Por isso, voltar até as origens do ser humano significa chegar ao momento em que surgiram os primeiros primatas – ordem de mamíferos à qual pertencem tanto homens quanto macacos.

Há 70 milhões de anos…
…surgiram os primeiros primatas. Um dos mais antigos, o Pleisiadapis, ainda era semelhante a um roedor. Só os de 35 milhões de anos atrás se assemelhavam aos atuais macacos. Nessa época, surgiu o Aegiptopiteco, animal arborícola e frutívoro, já com o cérebro um pouco desenvolvido e capaz de distinguir cores e relevos. Dele se originou o grupo dos hominóides, que inclui os gibões, os orangotangos, os chimpanzés, os gorilas e os homens. Há mais ou menos 30 milhões de anos, os gibões se separaram da linhagem que conduziu ao ser humano. Logo depois — há 17 milhões de anos — aconteceu a separação da linhagem dos orangotangos. Por fim, respectivamente há 7 e 12 milhões de anos, surgiram os gorilas e chimpanzés. Por terem se separado da nossa linhagem a menos tempo, esses dois animais ainda mantêm muitas semelhanças com os humanos, tanto na fisionomia quanto no comportamento.
E o cérebro cresce
Durante todo o processo de evolução do ser humano, um dado foi constante: o aumento do volume cerebral. Isso permitiu, a longo prazo, o desenvolvimento de instrumentos, da linguagem e da cultura.

Os primeiros hominídeos
O mais antigo hominídeo conhecido, com cerca de 4,5 milhões de anos, é o Ardipithecus ramidus. Eram animais ainda muito parecidos com os atuais chimpanzés, mas provavelmente já andavam sobre duas pernas. Os machos eram duas vezes maiores do que as fêmeas. Hoje, os cientistas acreditam que os A. ramidus viviam nas florestas, o que derruba a teoria de que o bipedismo tenha surgido quando nossos antepassados foram viver nas savanas. Então por que nos tornamos bípedes? Essa pergunta ainda não tem uma resposta definitiva, mas certamente andar sobre duas pernas proporcionava mais vantagens também na floresta. Nas savanas, o bipedismo permitia percorrer maiores distâncias em menor tempo, facilitando a busca por alimentos.
Os Australopithecus
O primeiro esqueleto de A. afarensis encontrado foi o da famosa Lucy. Ela recebeu esse nome porque a música Lucy in the Sky with Diamonds, dos Beatles, tocava no rádio no momento em que a equipe de arqueólogos percebeu que havia encontrado um esqueleto de mulher.
Ao contrário do que se pensava antigamente, a evolução humana não foi linear. Várias espécies surgiram e desapareceram, e até chegaram a conviver durante algum tempo. Há pouco mais de 4 milhões de anos surgiram os primeiros Australopithecus. Os mais antigos deles são o Australopithecus anamensis e o A. afarensis, já com características fisionômicas mais parecidas com as dos humanos atuais. Mas seu cérebro ainda mantinha a mesma dimensão do dos atuais chimpanzés. A primeira espécie a apresentar crescimento cerebral foi a A. africanus — que se alimentava de frutos e folhas e tinha a pele negra. Logo depois, surgiram três espécies quase simultâneas: a Australopithecus aethiopicus, a A. robustus e a A. boisei.
Em outro ramo evolutivo surgiu o Homo habilis, espécie de hominídeos com o cérebro mais desenvolvido da época. Foram os primeiros a talhar utensílios, em vez de simplesmente utilizar pedras e gravetos em estado bruto, como faziam alguns Australopithecus e como até hoje fazem os chimpanzés. Também foi a primeira espécie a organizar uma forma rudimentar de fala e a construir abrigos. Foi também com o H. habilis que os hominídeos adotaram hábitos carnívoros, alimentando-se inclusive de Australopithecus. Calma! Isso não quer dizer que fossem canibais. Não se esqueça de que os Australopitecus pertenciam a outra espécie animal.
Grupos de caçadores
Um primo distante do Homo habilis, chamado Homo ergaster, foi o primeiro a fazer armas e a se especializar na caça. Para aumentar sua eficiência contra grandes presas, passou a viver em pequenos grupos. A necessidade de coordenar as táticas de caça obrigou o desenvolvimento da comunicação e das linguagens oral e gestual. O Homo erectus descendeu do H. ergaster e já tinha capacidade cerebral próxima à nossa. Foi a primeira espécie a controlar o fogo e, com isso, tornaram-se capazes de migrar para regiões de climas mais frios. Os hominídeos deixavam a África e partiam para a Europa e Ásia. Mas o H. erectus ainda não seria a espécie a dominar o mundo. Outra estava por surgir, também descendente do H. ergaster: o Homo sapiens primitivo.
Ao contrário do que se pensava, o homem de Neanderthal não é um de nossos antepassados. Mas surgiu quase ao mesmo tempo que o Homo sapiens. Este último deu origem ao Homo sapiens sapiens, espécie à qual pertencemos.
Com suas roupas de pele, machados e lanças, os homens de Neanderthal viveram os rigores da glaciação.

O primo do H. sapiens
Quando o primeiro fóssil de Homo neanderthalensis — também conhecido como homem de Neanderthal — foi encontrado, em 1856, os pesquisadores acreditaram tratar-se de um de nossos antepassados na cadeia evolutiva. Estavam enganados. Hoje se sabe que o homem de Neanderthal era um “primo” do H. sapiens e chegou a conviver durante algum tempo com o homem moderno — o H. sapiens sapiens. Mas pesquisas mais recentes indicam que o homem de Neanderthal foi responsável por uma cultura muito mais avançada do que se supunha. Foram os primeiros artistas da Pré-História, criando flautas a partir de ossos, e os primeiros humanos a viver sob as duras condições das eras glaciares. Viviam em pequenos grupos familiares e os mais fracos eram apoiados pelos companheiros. Os mortos eram enterrados com utensílios, o que demonstra a prática de rituais e certa consciência religiosa. Já possuíam uma linguagem rudimentar, embora não fossem capazes de produzir um leque muito variado de sons. Faziam machados, facas e pontas de lanças, construíam cabanas de madeira, pedra e peles de animais. Desapareceram misteriosamente há 30 mil anos.
Finalmente, o homem moderno
Nessa longa linha evolutiva, por fim surgiu o Homo sapiens sapiens, há 130 mil anos. Desenvolveu vestuário, habitações, ornamentos, práticas medicinais e rituais. Também foi responsável pela criação de novas formas de arte, como a escultura e a pintura. Há 12 mil anos, o Homo sapiens sapiens descobriu a agricultura e domesticou os animais. Tornou-se sedentário e criou as primeiras cidades. Há 5 mil anos surgiram as primeiras civilizações e foi inventada a escrita. Era o fim da Pré-História e o início de uma nova aventura humana.
As pinturas encontradas em cavernas em várias partes da Europa são herança dos primeiros Homo sapiens sapiens.

Paleolítico
Esse período começou há cerca de 2 milhões de anos e terminou há 10 mil. Foi uma época de evolução física e cultural do homem.

Neolítico
Esse foi o período da Pré-História no qual aconteceram as maiores transformações da humanidade. Foi a época da domesticação dos animais e da criação da agricultura.

Idade dos Metais
A evolução humana originou as primeiras cidades no Oriente Médio. E, juntamente com a vida urbana, surgiu a escrita. A existência de documentos escritos determina o final da Pré-História e o início da História.

13.816 – Evolução das Espécies – De quem Evolui O Macaco?


lemures
Foi de um animal do tamanho de um ratinho, que morava escondido em buracos de árvores, comendo insetos, e que viveu há 100 milhões de anos. Fora isso, sabemos apenas que ele era parecido com pequenos mamíferos que existem hoje em dia, como o musaranho. Esse antepassado distante ainda não era um primata – ordem à qual os macacos e o homem pertencem e cujo primeiro representante só apareceria 40 milhões de anos depois. Esse lapso de tempo é enorme e até hoje ainda não são conhecidas as espécies que completariam esse período da árvore genealógica dos macacos. “Existe um buraco na evolução. Todos os fósseis encontrados, que fariam a ponte entre os insetívoros e os primatas, foram desconsiderados”, afirma o biólogo Walter Alves Neves, da Universidade de São Paulo (USP). O termo “desconsiderado” soa esquisito, mas significa que pesquisas posteriores mostraram que esses fósseis realmente não compunham os elos perdidos tão procurados pelos especialistas.
Se essa parte da história evolutiva dos macacos é nebulosa, pelo menos os capítulos mais adiante são bem conhecidos. Ao longo de milhões de anos, os primatas foram crescendo de tamanho e ganharam um cérebro maior. O hábito de viver de galho em galho ajudou nessa última transformação, pois nas árvores os primatas aprimoraram o tato e a visão para fugir de predadores e encontrar comida. A evolução dos sentidos levou esses animais a expandirem uma área do cérebro fundamental para o desenvolvimento de capacidades, como a associação de idéias e o aprendizado. Sem esse avanço, os primatas poderiam não ter sobrevivido e o homem nem sequer pisado na Terra.

A grande famíliaPrimos próximos
Os macacos simiiformes evoluíram a partir de antigos prossímios, ganhando mais agilidade e inteligência. Eles surgiram cerca de 45 milhões de anos atrás. Hoje há perto de 200 espécies desses animais, que se dividem entre os chamados macacos do novo mundo (que habitam as Américas), como o mico-leão, e os do velho mundo (África), como o mandril

Quase humano
O ancestral comum entre humanos e grandes primatas viveu há cerca de 6 milhões de anos e ainda é desconhecido. Há 5 milhões de anos surgiram os primeiros hominídeos: os australopitecos, parecidos com os macacos, mas bípedes. O primeiro ancestral do gênero Homo, o Homo habilis, surgiu 2 milhões de anos atrás e já manipulava bem objetos
Os grandes primatas vieram dos mesmos animais que deram origem aos macacos do velho mundo. A separação entre os ancestrais de um grupo e de outro foi há 25 milhões de anos. Os grandes primatas têm o cérebro maior e mais complexo. Hoje, são os gibões, gorilas, orangotangos, chimpanzés e bonobos – dos quais os dois últimos são nossos parentes mais próximos
Os primeiros primatas, chamados prossímios, surgiram há 60 milhões de anos. Alguns de seus representantes ainda estão por aí, como o moderno társio. Esses animais se diferenciaram de seus ancestrais insetívoros por terem uma dieta mais variada, corpos mais bem adaptados à vida nas árvores e um cérebro bem maior
Os mais distantes ancestrais dos macacos eram de uma extinta família de insetívoros (animais comedores de insetos) chamada Leptictidae, que viveu entre 100 milhões e 38 milhões de anos atrás. Seus membros se pareciam com o musaranho, um pequeno mamífero moderno. Além dos primatas, eles deram origem a outros animais, como cavalos e bois
Os lemurídeos se separaram do tronco evolutivo que deu origem ao társio e aos macacos modernos há mais de 50 milhões de anos, formando uma linhagem própria, que originou os atuais lêmures. Esses animais conservam uma aparência primitiva, com rosto de raposa e corpo de macaco.

13.814 – Biologia – O Primeiro Animal a Andar Sobre a Terra


animal terrestre
Fósseis de um animal de transição entre peixes e animais terrestres com 375 milhões de anos contestam um conceito amplamente aceito da teoria da evolução de que grandes apêndices posteriores que dariam origem às patas teriam aparecido depois que os vertebrados migraram da água para a terra.
Descobertos em 2004, os fósseis bem preservados da pélvis e de parte da nadadeira pélvica do Tiktaalik roseae, que parecia um híbrido de crocodilo e peixe, indicam que as patas traseiras na verdade tiveram origem em nadadeiras posteriores, afirmaram cientistas em uma pesquisa publicada na edição online da revista científica americana “Proceedings of the National Academy of Sciences” (PNAS), com datas de 13 a 17 de janeiro.
“Até então, os paleontólogos pensavam que uma transição havia sido produto de uma locomoção com duas nadadeiras nos peixes, anterior a uma locomoção ‘em quatro apêndices’ entre os tetrápodes”, explicou Neil Shubin, professor de anatomia da Universidade de Chicago, um dos principais autores da descoberta.
Segundo ele, “aparentemente esta transição teria ocorrido antes de tudo nos peixes e não entre os animais terrestres quadrúpedes”, como se supunha.
Os primeiros tetrápodes eram, de fato, animais exclusivamente aquáticos, ainda mal diferenciados dos peixes. Seus descendentes atuais são os anfíbios, as aves, os répteis e os mamíferos.
Hoje extinto, o Tiktaalik roseae tinha cabeça achatada como a de um crocodilo e dentes cortantes de um predador. Ele tinha 2,7 metros de comprimento e possuía uma morfologia muito similar à dos peixes, mas a articulação de suas nadadeiras peitorais leva a crer que este animal conseguia sustentar o peso de seu corpo.
O Tiktaalik roseae representa a espécie de transição mais conhecida entre os peixes e os tetrápodes terrestres, segundo os autores desta pesquisa.
“O Tiktaalik era uma combinação de características primitivas e avançadas. Aqui, não só suas características eram distintas, mas elas sugerem uma função avançada. Eles parecem ter usado a nadadeira de uma forma mais sugestiva do modo como um membro é usado”, explicou outro autor do estudo, Edward Daeschler, curador associado de Zoologia de Vertebrados na Academia de Ciências Naturais da Universidade de Drexel.
As primeiras análises sobre o animal foram realizadas em fósseis encontrados em 2004 no Ártico canadense, na altura da ilha de Ellesmere.
Sem dúvida alguma, as nadadeiras eram utilizadas como remos para nadar, mas poderiam também servir como patas em algumas ocasiões, explicaram os autores deste estudo.
Os trabalhos também permitiram aos cientistas fazer uma nova simulação, mostrando como o Tiktaalik se parecia e como se deslocava em seu hábitat.

13.684 – Antropologia – Por que os cérebros humanos se tornaram tão grandes?


cerebro-
Esse é um “mistério” que intriga os cientistas já faz um tempo: enquanto a maioria dos organismos prospera com pequenos cérebros, ou nenhum, a espécie humana optou por sacrificar seu crescimento corporal em troca de mais capacidade cerebral.

A hipótese
Os pesquisadores Mauricio Gonzalez-Forero e Andy Gardner, da Universidade de St Andrews, na Escócia, acreditam ter descoberto por que isso aconteceu.
O cérebro humano teria se expandido principalmente em resposta a estresses ambientais, que forçaram nossa espécie a encontrar soluções inovadoras para se alimentar e se abrigar, passando essas lições adiante para seus filhos.
Essa hipótese, testada pela dupla via simulações computacionais, desafia uma teoria popular de que o órgão cresceu à medida que as interações sociais entre os humanos se tornaram mais complexas.
Na verdade, o inverso pode ser verdadeiro. “As descobertas são intrigantes porque sugerem que alguns aspectos da complexidade social são mais prováveis de serem consequências do que causas de nosso grande tamanho cerebral. O grande cérebro humano mais provavelmente se originou da solução de problemas ecológicos e da cultura cumulativa do que da interação social”, disse Gonzalez-Forero ao portal Phys.org.

Causa ou consequência
De nossos ancestrais australopitecos, mais semelhantes aos símios, até o moderno Homo sapiens, o cérebro humano triplicou de tamanho.

Alimentar um cérebro tão grande vem com o custo de um crescimento lento do corpo na infância – deixando nossos filhos mais dependentes e vulneráveis por mais tempo do que os de outros animais.

Pesquisas anteriores encontraram correlações entre o tamanho do cérebro grande em espécies animais e estruturas sociais complexas, bem como vida em ambientes desafiadores e uma capacidade de aprender lições com colegas, o que também é descrito como “cultura”.

Mas nenhum estudo foi capaz de concluir se esses fatores são a causa da expansão cerebral ou o resultado disso.
Os “cérebros” utilizados como modelos foram apresentados a desafios ecológicos, como encontrar presas em condições climáticas adversas ou em terrenos difíceis, ou preservar alimentos para protegê-los contra mofo ou deterioração, ou ainda armazenar água em meio à seca.

Desafios sociais também foram introduzidos, para testar a influência da cooperação e competição entre indivíduos e grupos no crescimento do cérebro.

Curiosamente, a cooperação foi associada a uma diminuição no tamanho do cérebro, provavelmente porque permitia que os indivíduos confiassem nos recursos uns dos outros e economizassem energia. Enquanto as demandas sociais não pareciam levar a cérebros grandes, problemas ecológicos cada vez mais difíceis expandiam os órgãos.
Interação Social 0 x 1 Cultura
Mas então por que os cérebros de outros animais que vivem em ambientes desafiadores não cresceram tanto quanto o cérebro humano?

Provavelmente por causa da cultura – a habilidade de aprender com os outros, ao invés de ter que descobrir tudo sozinho.

“Nossos resultados sugerem que é a interação da ecologia e da cultura que produziu o tamanho do cérebro humano”, disse Gonzalez-Forero.

13.683 – Biologia – Veja o tamanho e peso do cérebro humano em comparação com outros animais


cerebro animal
O cérebro humano é incrível, e, com certeza, o que mais nos diferencia dos outros animais. Mas não é o maior cérebro do reino animal; animais maiores, como baleias e elefantes, têm cérebros maiores (a baleia- azul, com seus 10 kg de cérebro, tem o maior do reino animal).
Porém, o cérebro humano é muito grande quando comparado com o tamanho do nosso corpo. O cérebro humano pesa, em média, 1,5 kg. Em um homem de 80 kg, é quase 2% do seu peso corporal. Já a baleia-azul, com suas 200 toneladas, tem um cérebro que ocupa apenas 0,005% de seu corpo.
Mas proporção também não é tudo. Se inteligência dependesse só disso, estaríamos empatados com os ratos, que também têm um cérebro que ocupa 2% de espaço no corpo.

A chave é a complexidade desse órgão.
A maioria das criaturas vivas possui um sistema nervoso. Em algumas delas, ele é muito simples, como o da anêmona-do-mar, que tem apenas uma pequena rede de células nervosas. Nos insetos, essas células ficam lado a lado para formarem os nervos. Em criaturas mais complexas, forma-se uma coluna que possui um cérebro e uma medula espinal. Entre estes animais, os peixes possuem o cérebro mais simples, não muito maior que seu olho.
Quanto mais rugas tem um cérebro, mais neurônios ele tem. O cérebro humano tem mais pregas e rugas do que muitos outros animais. Por exemplo, o cérebro de um esquilo ou de um rato é muito liso comparado com o de um ser humano, por isso não é tão complexo. Alguns animais, como os golfinhos e as baleias, têm cérebros quase tão enrugados quanto os nossos.
Conclusão: tamanho e peso não são documento. Rugas podem ser mais decisivas – ainda que não expliquem todos os mistérios da inteligência.
Mas, por divertimento, confira o tamanho e o peso médio do cérebro de várias espécies animais:

cerebro animal2

 

Primatas:
Humano (Homo sapiens): 1,176 kg
Chipanzé (Pan troglodytes): 273 g
Babuíno (Papio cynocephalus): 151 g
Mandril (Mandrillus sphinx): 123 g
Macaco (Macaca tonkeana): 110 g
Carnívoros:

Urso (Ursus arctos): 289 g
Leão (Panthera leo): 165 g
Guepardo (Acinonyx jubatus): 119 g
Cão (Canis familiaris): 95 g
Gato (Felis catus): 32 g
Artiodátilos:
Girafa (Giraffa camelopardalis): 700 g
Cudo, um antílope africano (Tragelaphus strepsiceros): 166 g
Muflão, carneiro selvagem (Ovis musimon): 118 g
Cabra do Gerês (Capra pyrenaica): 115 g
Queixada (Tayassu pecari): 41 g
Marsupiais:

Wallaby (Protemnodon rufogrisea): 28 g
Lagomorfos:

Coelho (Oryctolagus cuniculus): 5,2 g
Roedores:

Rato-preto ou ratazana (Rattus rattus): 2,6 g
Camundongo ou rato-doméstico (Mus musculus): 0,5 g
Bônus
Baleia cachalote: 7,8 kg
Vaca: 5,6 kg
Orca: 5,6 kg
Elefante: 7,5 kg
Golfinho: 1,6 kg
Abelha: 0,013 g
Beija-flor: 1 g
Hipopótamo: 500 g
Curiosamente, a proporção entre o cérebro e o corpo da abelha (15,6%) é bem maior que a do hipopótamo (0,017%), tornando-a mais esperta. Já a barata nem cérebro tem. No lugar, possui o cefalotorax, um órgão que atravessa seu corpo e só serve mesmo para mantê-la viva. Para matá-la, mal adianta arrancar sua cabeça…[NeuroscienceResearchTechniques, MundoEstranho, SuperInteressante, CerebroEMEnte]

13.593 – Alimentação na Pré-história e evolução


pintura rupestre
Diversas espécies do gênero homo desenvolveram-se ao longo de milhões de anos até a chegada à espécie dos homo sapiens, da qual os cientistas afirmam que nós, humanos contemporâneos, fazemos parte.
Muitos desses cientistas afirmam que a adoção de uma dieta também baseada em proteína animal teria contribuído para a evolução dos seres humanos e que essa adoção teria se dado ao longo de muito tempo, resultando na criação de diversas habilidades para conseguir esse tipo de alimento.
Durante o chamado período Paleolítico, uma divisão temporal que se estendeu por cerca de dois milhões de anos, até mais ou menos 10 mil anos atrás, os humanos ainda viviam da coleta de frutas, raízes e outras espécies vegetais, mas começaram a desenvolver o hábito de se alimentar de proteína animal, decorrente da caça, da pesca e da coleta de mariscos, mas também do aproveitamento de carcaças de animais deixadas por outros carnívoros.
Para o paleoantropólogo Henry Bunn, da Universidade de Wisconsin-Madison, a habilidade de obtenção da carne e a forma de dilacerar a carcaça dos animais sofreram alteração durante o paleolítico. Ele dividiu em três etapas o processo.
Primeiramente, os chamados hominídeos retalhavam a carne dos ossos das carcaças de animais, usando alguns instrumentos feitos de pedra ou de lascas de pedras. Esse primeiro período teria ocorrido entre 2,6 e 2,5 milhões de anos atrás, indicando ainda uma capacidade pequena dos hominídeos de obter alimentos com proteína animal.
Um segundo momento seria caracterizado por um procedimento mais comum de manuseio da carne a ser ingerida, além de passarem a desenvolver a habilidade de quebrar os ossos para também se alimentar do tutano de seu interior e carregarem as carcaças de animais para lugares distintos de onde haviam sido encontrados ou abatidos. Nesse estágio, entre 2,3 e 1,9 milhão de anos, os hominídeos ainda se apropriavam de carcaças de presas de outros carnívoros, mas também já conseguiam obter presas próprias.
O terceiro estágio nessa evolução “carnívora” dos hominídeos do Paleolítico caracterizar-se-ia pelo retalho extensivo dos restos dos animais, obtendo carcaças intactas, decorrentes de novas habilidades de apropriação de presas de outros carnívoros ou mesmo decorrentes da prática da caça, que se tornava rotineira. A datação dessa última fase é estimada entre 1,8 e 1,6 milhão de anos e demonstra que, além de caçar, os hominídeos do período atuavam na obtenção de partes de caça de outros mamíferos carnívoros.
Para outro especialista, o paleontólogo Lars Werdelin, esse desenvolvimento da habilidade de obtenção de carne pelos hominídeos teria causado uma diminuição no número de espécies carnívoras no leste da África, tendo possivelmente sido eliminadas muitas espécies de animais de grande porte. A entrada dos hominídeos na cadeia alimentar carnívora, somada a alterações climáticas, teria, dessa forma, mudado de forma drástica o ecossistema dessa região africana.

13.567 – Pré História – O Neandertal


hombre_de_neandertal
Era uma espécie do gênero Homo neanderthalensis, que habitou a Europa e alguns lugares do oeste da Ásia acerca de 230.000 a aproximadamente 29.000 anos atrás. Os Neandertais eram adaptados ao frio, seus cérebros eram aproximadamente 10% maiores em volume que os dos humanos modernos. Na média, os Neandertais tinham cerca de 1,65 m de altura e eram muito musculosos. Seu estilo característico de fabricação de ferramentas de pedra é chamado de cultura musteriense.

São características físicas dos Neandertais:

Crânio
– Fossa suprainíaca, um canal sobre a protuberância occipital externa do crânio
– Protuberância ocipital
– Meio da face projetado para frente
– Crânio alongado para trás
– Toro supraorbital proeminente, formando um arco sobre as orbitas oculares
– Capacidade encefálica entre 1200 e 1700 cm³ (levemente maior que a dos humanos modernos)
– Ausência de queixo
– Testa baixa, quase ausente
– Espaço atrás dos molares
– Abertura nasal ampla
– Protuberâncias ósseas nos lados da abertura nasal
– Forma diferente dos ossos do labirinto no ouvido

Pós-Crânio

– Consideravelmente mais musculosos
– Dedos grandes e robustos
– Caixa torácica bastante arredondada
– Forma diferente da pélvis
– Rótulas grandes
– Clávícula alongada
– Omoplatas curtos e arqueados
– Ossos da coxa robustos e arqueados
– Tíbias e fíbulas muito curtas

13.556 – Mega Arquivo na Pré – História


hominideo-o-cc3a9rebro-e-as-habilidades

O que é Pré-história?

Pré-história é um período que compreende aproximadamente cinco milhões de anos, tendo se encerrado por volta de 6 mil a.C. Esse período é alvo de estudos multidisciplinares, isto é, envolve especialistas como arqueólogos, biólogos, paleontólogos, químicos, historiadores etc. Mas em termos propriamente restritos à linguagem historiográfica (utilizada por historiadores profissionais), a Pré-história pode ser qualificada como o período anterior ao aparecimento das cidades (organização urbana) e da escrita. Esse longo período é geralmente dividido em duas fases: o Paleolítico, ou Idade da Pedra Lascada, e Neolítico, ou Idade da Pedra Polida.

Homem pré-histórico
Geralmente, em uma tentativa de definição precária, tendemos a chamar nossos antepassados do período em questão de “homens pré-históricos”. Mas há uma denominação mais apropriada para isso: hominídeos. Os hominídeos pertencem a uma família taxonômica classificada pela Biologia e intitulada hominidae. Nós, humanos, estamos dentro dessa “família”, assim como os chimpanzés. Todavia, não somos da espécie dos chimpanzés e, muito menos, os hominídeos que nos precederam.
Os hominídeos conseguiram, ao longos de milhões de anos, desenvolver ferramentas e utensílios domésticos complexos. Conseguiram dominar o fogo, que passou a ser utilizado tanto para o aquecimento quanto para cozinhar alimentos, e conseguiram ainda o mais extraordinário: desenvolver sistemas simbólicos, como urnas e câmaras funerárias, esculturas e pinturas rupestres.
Esses hominídeos podem ser divididos em ordem cronológica. Os mais antigos pertencem ao grupo Ardipithecus ramidus, cujo aparecimento comprovado pela arqueologia varia de 5 e 4 milhões de anos. Há também outro exemplo, o Australopithecus afarensis, cujo aparecimento na Terra varia entre 3,9 e 3 milhões de anos. Por outro lado, houve, mais tarde, o surgimento do gênero Homo. Houve, por exemplo, o Homo habilis, que viveu entre 2,4 e 1,5 milhão de anos. O Homem erectus, entre 1,8 milhão e 300 mil de anos. Depois, o Homo neanderthalensis, entre 230 e 30 mil anos. Nós, humanos, pertencemos ao grupo Homo sapiens, que apareceu, provavelmente, há cerca de 120 mil anos.

Paleolítico e Neolítico
O período Paleolítico é o mais longo, indo de 3 milhões a.C. até 10.000 a.C. Ele é caraterizado pelo nomadismo e pelo uso ainda precário de utensílios. Foi nesse período que apareceram os hominídeos expostos acima. No Neolítico, segunda e mais importante fase da pré-história, ocorreu a revolução da “pedra polida”, o que possibilitou o sedentarismo e as primeiras formas de agricultura sistemática. Foi dentro da “revolução neolítica” que nasceu o Homo sapiens e, por consequência, as primeiras civilizações, caracterizadas pela fundição de metais, como o cobre e o ferro.

13.418 – Dinossauro ‘Frankstein’ pode ser chave para entender evolução da espécie


chilesaurus
Chilesaurus, que foi descoberto em 2015, apresenta características que o colocam entre os grupos do animais carnívoros e herbívoros. Pelo menos é o que aponta um novo estudo dos fósseis encontrados no Chile, da Universidade de Cambridge e do Museu de História Natural do Reino Unido.
“Sua estranha mistura de características o coloca em uma posição-chave na evolução dos dinossauros e ajuda a mostrar como algumas das grandes divisões entre os principais grupos podem ter surgido”, afirma Paul Barrett, um dos pesquisadores, em comunicado oficial.
Acredita-se que o animal tenha tido um crânio pequeno, pescoço longo e corpo com cerca de 3 metros. Supõe-se que ele tenha vivido há cerca de145 milhões de anos, durante o Período Jurásico. Enquanto sua cabeça se assemelhava à de um carnívoro, o Chilesaurus tinha dentes planos mais adequados para comer plantas, o que o torna um mistério.
“Houve uma divisão na árvore genealógica dos dinossauros, e os dois ramos tomaram diferentes direções evolutivas”, afirma Matthew Baron, da Universidade de Cambridge. “Isso parece ter acontecido por causa da mudança na dieta para Chilesaurus. Parece que se tornou mais vantajoso para alguns animais que comiam carne começar a comer plantas, possivelmente até por necessidade”.
Se essa espécie for do grupo Ornitópode em vez do Terópoda, como se acreditava antes, a explicação para a evolução dos dinossauros ficará muito mais clara, pois mostrará que esses animais estão mais próximos do que era imaginado antes. Ou seja, o Chilesaurus será a prova disso.

dino-f-tree

13.258 – Os estranhos animais híbridos criados pela mudança climática


camaleao2
O aquecimento global pode levar espécies inteiras à extinção!
Pesquisadores do departamento de ecologia da Universidade de Tuscia, na Itália, acreditam que a mudança climática fará com que sejam cada vez mais frequentes os casos de hibridização entre diferentes espécies animais.
Na Europa, por exemplo, estão sendo registrados vários cruzamentos entre sapos-europeus (bufo bufo), uma espécie presente em quase todo o continente, e sapos-baleares (bufotes balearicus), naturais do sul da Itália. Os dois animais, inclusive, sincronizaram seus ciclos reprodutivos – apesar de os girinos resultantes da união apresentarem problemas genéticos e não serem capazes de completar o ciclo da metamorfose.
Embora a reprodução entre espécies com semelhanças genômicas tenha sido fundamental na história da evolução natural, o aquecimento global está acelerando o processo e provocando, muitas vezes, a extinção de espécies inteiras.
Os cientistas acreditam que é essencial entender a diferença entre o processo natural de cruzamento entre as espécies e a hibridização causada pela atividade humana, sendo essa última uma séria ameaça para os ecossistemas.

13.243 – Universidade Mackenzie de SP abre centro que questiona a evolução


markenzie
A Universidade Presbiteriana Mackenzie, uma das mais tradicionais de São Paulo, acaba de inaugurar um núcleo de ciência, fé e sociedade que tem como um de seus objetivos a realização de pesquisas sobre a chamada teoria do DI (Design Inteligente).
Os defensores do DI, cujas ideias são rejeitadas pela maioria da comunidade científica, argumentam que os seres vivos são tão complexos que ao menos parte de suas estruturas só poderia ter sido projetada deliberadamente por algum tipo de inteligência.
O novo centro recebeu o nome de Núcleo Discovery-Mackenzie por causa da parceria entre a universidade brasileira e o Discovery Institute, nos EUA.
A instituição americana está entre os principais promotores da causa do DI e já sofreu derrotas judiciais em seu país por defender que a ideia fosse ensinada em escolas públicas em paralelo com a teoria da evolução, hoje a explicação mais consolidada sobre a diversidade da vida.
Tribunais dos EUA consideraram que o DI seria, na essência, muito semelhante ao criacionismo bíblico (a ideia de que Deus criou diretamente o homem e os demais seres vivos) e, portanto, seu ensino violaria a separação legal entre religião e Estado no país.
“É importante destacar que não é um núcleo de DI, e sim um núcleo de fé, ciência e sociedade”, declarou à Folha o teólogo e pastor presbiteriano Davi Charles Gomes, chanceler da universidade. “Nossa instituição é confessional, o que significa que ela tem uma visão segundo a qual o mundo tem um significado transcendente. E não existe ciência que, no fundo, não reflita também sobre coisas transcendentes.”

DE BACTÉRIAS AO TRÂNSITO
Segundo Gomes, o contato com o Discovery Institute já acontece desde a década passada, quando a universidade começou a organizar o ciclo de simpósios Darwinismo Hoje, trazendo biólogos defensores da teoria da evolução e palestrantes que questionam o consenso científico.
Para especialistas, o projeto tem sabor de fracasso. “É triste e extremamente preocupante”, diz o paleontólogo Mario Alberto Cozzuol, da UFMG (Universidade Federal de Minas Gerais). “As premissas do DI foram derrubadas e expostas já faz muito tempo. Seus proponentes não têm aportado nenhuma novidade para a discussão. O único motivo pelo qual isso continua atraindo gente é a falta de educação em ciências.”

argumento pro

argumento contra

13.231 – Biologia – Como a evolução transformou os gatos em animais solitários


gato x rato
A vida em grupo é comum na natureza. Pássaros formam bandos e peixes, cardumes. Predadores frequentemente caçam juntos. Até mesmo o leão, parente do gato doméstico, vive em grupo.
Para as espécies que são caçadas por outras, obviamente há uma estratégia de maior segurança em um bando. “Chama-se efeito de diluição”, diz o biólogo Craig Packer, da Universidade de Minnesota (EUA).
“Um predador só consegue matar um, e se há cem da mesma espécie isso reduz as chances de cada um deles ser pego para 1%. Mas se você estiver sozinho você será escolhido 100% das vezes.”
Animais em bando também se beneficiam do efeito “muitos olhos atentos”: quanto maior o grupo, é mais provável que alguém perceba um predador se aproximando. “E quanto mais cedo você detectar o predador, mais tempo tem para iniciar a fuga”, diz Jens Krause, da Universidade de Humboldt em Berlim, Alemanha.
Essa vigilância coletiva traz outras vantagens. Cada um pode gastar mais tempo e energia procurando por comida. E não se trata apenas de evitar predadores. Animais que socializam em grupos não precisam perambular em busca de companheiros, o que é um problema para espécies solitárias que vivem em territórios amplos.
Uma vez que se reproduzem, muitos animais que vivem em grupo adotam a máxima “é necessária uma aldeia inteira para criar uma criança”, com os adultos trabalhando em equipe para proteger ou alimentar os mais novos.
Em várias espécies de pássaros, como a zaragateiro-árabe de Israel, os pequenos permanecem em grupos de familiares até que eles estejam prontos para procriar. Eles dançam em grupo, tomam banho juntos e até trocam presentes entre si.
Viver em grupo também poupa energia. Os pássaros que migram juntos ou os peixes que vivem em cardumes se movimentam com mais eficiência do que os mais solitários.
É o mesmo princípio que os ciclistas da Volta da França utilizam quando formam um pelotão. “Os que estão mais atrás não precisam investir tanta energia para atingir a mesma velocidade de locomoção”, diz Krause.
Como pinguins e morcegos podem atestar, a vida pode ser mais calorosa quando se vive cercado de amigos.
Com tantos benefícios, pode parecer surpreendente que qualquer animal rejeite seus companheiros. Mas, como os gatos domésticos demonstram, a vida em grupo não é para todos. Para alguns animais, os benefícios da coletividade não compensam ter que dividir comida.
Um fator-chave para essa decisão é ter alimentação suficiente, o que depende de quanta comida cada animal precisa. E os gatos têm um gosto caro. Por exemplo, um leopardo come cerca de 23 kg de carne em poucos dias. Para gatos selvagens, a competição por alimentos é cruel, e por isso leopardos vivem e caçam sozinhos.
Há uma exceção à regra de felinos solitários: leões. Para eles, é uma questão territorial, diz Packer, que passou 50 anos de sua vida estudando os leões africanos. Alguns locais da savana têm emboscadas perfeitas para a caça, então controlar esse lugar resulta em uma vantagem significativa em termos de sobrevivência.
O que torna essa vida em grupo possível é que a presa de um único leão –um gnu ou uma zebra– é grande o bastante para alimentar várias fêmeas de uma vez só. “O tamanho da caça permite que eles vivam em grupos mas é a geografia o que realmente os leva a viver em grupos”, diz Packer.
Não é a mesma situação dos gatos domésticos, já que eles caçam animais pequenos. “Eles vão comê-lo inteiro”, diz Packer. “Não há comida o suficiente para dividir.”
Essa lógica econômica está tão integrada ao comportamento dos gatos que parece improvável que até mesmo a domesticação tenha alterado essa preferência fundamental por solidão.
Isso é duplamente verdade quando você leva em consideração o fato de que os humanos não domesticaram os gatos. Em vez disso, em seu próprio estilo, os gatos domesticaram a si mesmos.
Todos os gatos domésticos são descendentes dos gatos selvagens do Oriente Médio (Felis silvestris), o “gato-do-mato”. Os humanos não coagiram esses gatos a deixar as florestas: eles mesmos se convidaram a entrar nos alojamentos de humanos, onde havia uma quantidade ilimitada de ratos ao seu dispor.
A invasão a essa festa de ratos foi o início de uma relação simbiótica. Os gatos adoraram a abundância de ratos nos alojamentos e depósitos e os humanos gostaram do controle grátis da infestação de ratos.
Os gatos domésticos não são completamente antissociais. Mas sua sociabilidade –em relação a outro humano ou entre eles– é determinada inteiramente por eles, em seus próprios termos.
Aliás, mesmo diante de um grande perigo, quando eles se unem para se defender, é pouco provável que os gatos colaborem entre si. “Não é que algo que eles tipicamente façam quando se sentem ameaçados”, diz Monique Udell, bióloga da Universidade de Oregon (EUA).
É preciso dizer que os gatos domésticos trilharam um longo caminho a partir de seus ancestrais até aqui em termos de tolerar a companhia um do outro. Mesmo que gatos morando em galpões formem laços frouxos, eles ainda demonstram um nível impressionante de aceitação da presença do outro nesses espaços confinados.
Em Roma, cerca de 200 gatos vivem lado a lado no Coliseu, enquanto na ilha de Aoshima, no Japão, o número de gatos supera o de pessoas em uma proporção de seis para um. Essas colônias podem não ter tanta cooperação, mas estão bem avançadas em relação ao passado solitário dos gatos domésticos.
Enquanto isso, pode ser mais fácil para pesquisadores encontrar os gatos “no meio do caminho” ao realizar seus experimentos, fazendo certas concessões.
Quando Udell fez suas primeiras experiências com gatos, enfrentou uma série de dificuldades ao tentar motivar suas cobaias a participar de certa atividade. Ela já havia trabalhado com cachorros, que estariam dispostos a fazer qualquer coisa em troca de um petisco.
Os gatos, contudo, eram mais exigentes. Com o passar do tempo, Udell percebeu que teria mais sucesso se desse aos gatos a opção de escolher sua recompensa.

12.993 – Evolução – Mutação em gene pode ter ajudado cérebro humano a ficar gigantesco


evolucao-cabeca
Uma mutação aparentemente insignificante no DNA dos ancestrais da humanidade pode ter contribuído para que nosso cérebro alcançasse o tamanho descomunal que tem hoje (três vezes maior que o dos grandes macacos).
Bastou inserir o gene que contém essa mutação em fetos de camundongo para que dobrasse o número de células que dão origem aos neurônios do córtex, a área cerebral mais “nobre”.
A pesquisa, conduzida por cientistas do Instituto Max Planck (Alemanha), é um dos primeiros frutos da tentativa de usar o genoma para entender como a evolução humana se desenrolou. Por enquanto, isso não tem sido fácil –tanto que o gene analisado pelos pesquisadores no novo estudo, designado pela indigesta sigla ARHGAP11B, é o único específico da linhagem humana a ser associado com a proliferação das tais células do córtex cerebral.
Desde quando esse fenômeno acontece no cérebro dos membros da linhagem humana? “A mutação deve ter acontecido antes de 500 mil anos atrás”, diz Huttner –isso porque ela não é exclusiva do DNA dos seres humanos modernos.
Os colegas do pesquisador Max Planck estão entre os responsáveis por resgatar o genoma de dois parentes extintos da nossa espécie, os neandertais e os denisovanos. Ao desvendar o DNA completo de ambas as espécies, os cientistas identificaram o gene ARHGAP11B –mas nada de encontrá-lo em outros primatas ou mamíferos.
Segundo o pesquisador alemão, uma possibilidade é que essa mutação tenha acontecido no DNA do Homo erectus, primeiro ancestral do homem a ter passado por um grande aumento de sua capacidade cerebral. O estudo saiu na revista especializada “Science Advances”.

SE MACACOS FALASSEM
Na mesma edição da revista, outro estudo pode ter resolvido uma polêmica antiga: será que macacos são capazes de falar?
Por incrível que pareça, a resposta é sim –ao menos quando se examina o aparato vocal dos bichos, ou seja, as pregas vocais, a língua e o formato da boca.
Até hoje, ninguém conseguiu fazer com que chimpanzés ou outros primatas dominassem os rudimentos da linguagem falada humana (embora alguns desses macacos tenham aprendido elementos da linguagem de sinais).
O debate que havia em torno do assunto era o seguinte: essa incapacidade se deve à falta de flexibilidade do aparato vocal das criaturas ou aos seus cérebros mais rudimentares que os nossos, que não lhes permitem controlar a emissão de sons de forma tão sofisticada quanto o homem?

12.969 – Biologia e Evolução – O voo das aves


aves
A capacidade de voar das aves é totalmente dependente de uma série de adaptações que permitiram a conquista do ambiente aéreo. No sistema respiratório pulmões alveolares são combinados com sacos aéreos que não participam das trocas gasosas, mas criam um fluxo de ar contínuo e em uma única direção nos pulmões. Esses sacos aéreos possuem aproximadamente nove vezes o volume dos pulmões, ocupam a maior parte da cavidade dorsal do corpo e se estendem por cavidades internas dos ossos, formando os ossos pneumáticos que são leves e resistentes. Além disso, o fluxo de ar de sentido único maximiza a eficiência das trocas gasosas, permitindo o voo em altas altitudes, e dissipam o calor produzido pelos altos níveis de atividade muscular durante o voo através dos fluxos de corrente cruzada de ar e sangue nos pulmões.
Além dos ossos pneumáticos, algumas características dos órgãos internos das aves também reduzem sua massa corpórea. Elas não têm bexiga urinária e a maioria das espécies tem somente um ovário. As gônadas, tanto de machos quanto de fêmeas, são geralmente pequenas e regridem ainda mais quando a época de reprodução termina. Por outro lado, os corações são grandes e a velocidade de fluxo sanguíneo é alta para garantir a demanda de oxigênio durante o voo.
As penas também são estruturas protagonistas do voo, em especial as rêmiges (penas da asa) e as rectrizes (penas da cauda). Ao contrário de um avião, nas aves as asas não só promovem estabilidade durante o voo, mas também fazem a propulsão do animal. As rêmiges primárias, inseridas nos ossos da mão, são responsáveis pela maior parte da propulsão quando a ave bate suas asas, e as secundárias, inseridas no antebraço, fornecem a força de ascensão. Com a mudança da forma e da área das asas, assim como sua disposição em relação ao corpo, a ave consegue controlar a velocidade e a força de ascensão, o que permite a realização de manobras, mudança de direção, aterrissagem e decolagem. Aves que levantam vôo rapidamente têm asas largas e arredondadas, que lhes dão aceleração. Já as aves que voam por um longo período têm asas longas. Aquelas que voam em alta velocidade (aves de rapina, por exemplo) possuem asas longas e curvas com extremidades pontiagudas, para reduzir o atrito com o ar, e as aves que realizam muitas manobras de mudança de direção terão, por sua vez, caudas profundamente bifurcadas.
Obviamente, a capacidade de voo desenvolvida pelas aves é muito vantajosa evolutivamente, pois se mantém até hoje. Porém, como toda atividade desenvolvida por qualquer organismo vivo, gera um custo energético, o qual neste caso é muito alto. Por esse motivo, é tão comum vermos as aves que voam longas distâncias voarem em grupos, geralmente em uma formação específica. Pelicanos, por exemplo, quando voam em formação, alternam entre si o batimento das asas e planeio em uma sucessão regular. Dessa forma, esses animais aumentam seu tempo planando e, consequentemente, diminuem sua frequência cardíaca e seu gasto energético em comparação com o voo individual.

12.870 – Dinossauros não cantavam como pássaros


pterossauro
Apesar de dinossauros serem considerados os antepassados diretos dos pássaros modernos, segundo novas pesquisas, eles tinham uma grande diferença dos bichos voadores de hoje em dia: eles não cantavam. A descoberta foi feita a partir da análise de fósseis – mais precisamente da procura por siringes, o órgão responsável pelo canto em aves. Ele nunca foi encontrado em animais que viveram antes de 66 milhões de anos – e mesmo nessa ocasião já existiu em um parente dos gansos. Tudo indica que dinossauros, portanto, não teriam as ferramentas para se arriscar na cantoria.
A descoberta indica que a capacidade de cantar tenha se desenvolvido em um ponto mais avançado da evolução dos pássaros, quando eles já estavam se diferenciando dos dinossauros. “Esse é um passo importante para descobrir qual é o barulho que os dinossauros faziam, além de dar pistas sobre a evolução das aves”, disse Julia Clarke, paleontóloga e autora da pesquisa.
A siringe mais antiga do mundo, datada do mesozóico, foi encontrado na espécie Vegavis igaai, que viveu onde hoje é a Antartica. A ave era uma espécie de tataravô dos gansos e já voava. Arqueólogos acreditam que ele soltava ganidos parecidos com uma buzina graças a uma siringe especialmente assimétrica. A descoberta foi feita comparando o órgão a 12 pássaros vivos.
Geralmente, siringes não fossilizam bem, pois são compostos por anéis de cartilagem. Esses anéis servem de suporte para um tecido mole que vibra com a passagem do ar, isto é, com a cantoria. Há esperanças, portanto, de que o órgão seja encontrado em espécies mais antigas também – embora isso nunca tenha acontecido até agora.

12.778 – Vida na Terra se originou 220 milhões de anos antes do que se pensava


fósseis
Nas águas rasas do oceano primordial que cobria a Terra há 3,7 bilhões de anos, comunidades de micro-organismos já faziam o que alguns de seus parentes modernos continuam fazendo até hoje: construíam estruturas vagamente parecidas com cones ou morrinhos, grudando grãos de sedimento marinho uns nos outros conforme cresciam.
Essas estruturas, conhecidas como estromatólitos, são os mais antigos fósseis do planeta, argumentam pesquisadores australianos e britânicos em artigo na revista científica “Nature”. Embora já houvesse algumas indicações geoquímicas da presença de seres vivos mais ou menos na mesma época, a presença dos estromatólitos em rochas do sudoeste da Groenlândia seria uma evidência bem mais sólida sobre as origens da vida na Terra. As estruturas descritas no novo estudo são cerca de 200 milhões de anos mais velhas que os estromatólitos mais antigos conhecidos até então.
A equipe liderada por Allen Nutman, da Universidade de Wollongong (Nova Gales do Sul, Austrália), foi bastante sortuda ao identificar as estruturas porque, em rochas tão idosas, sempre há a ação de forças geológicas que modificam profundamente as características do material original. Apesar disso, os pesquisadores conseguiram identificar um trecho das camadas rochosas com a distribuição de camadas típica dos estromatólitos.
Tais estruturas surgem conforme micróbios que dependem da luz do Sol vão crescendo em camadas, deixando embaixo de si os restos de seus ancestrais e os sedimentos marinhos que capturaram ao se reproduzir (veja infográfico). Com o tempo, formam-se elevações que podem lembrar mesas, cogumelos ou cones.
Além da estrutura laminar característica, a composição química também sugeriu aos pesquisadores que estavam diante de objetos de origem biológica: os minerais dentro dos estromatólitos tinham uma “receita” diferente da que existia nas camadas de rocha circundantes, o que parece indicar a ação dos micro-organismos interagindo de forma específica com o ambiente marinho. Tais detalhes de composição química também foram essenciais para comprovar que o ambiente original das estruturas era o mar. Rochas vulcânicas achadas nas vizinhanças dos estromatólitos permitiram a datação relativamente precisa do surgimento deles.
Em Marte, por exemplo, já está claro que havia água no estado líquido na superfície do planeta durante as primeiras centenas de milhões de anos de sua existência. Teria sido suficiente para que micróbios simples surgissem? Ainda não é possível sanar essa dúvida. Mas, se estromatólitos já estavam se formando na Terra há 3,7 bilhões de anos, aumenta a probabilidade de que a resposta seja sim.
Isso porque, até 4 bilhões de anos atrás, a jovem superfície terrestre estava debaixo de chumbo grosso, sendo bombardeada constantemente por gigantescas sobras rochosas da formação do Sistema Solar. Esse primeiro período da história da Terra foi tão violento que ganhou o apelido de éon Hadeano (nome derivado de Hades, o reino dos mortos na mitologia grega).
A idade dos estromatólitos groenlandeses sugere que a vida se estabeleceu de modo relativamente rápido em meio aos escombros ainda fumegantes do Hadeano – até porque provavelmente seriam necessárias várias fases intermediárias de evolução de moléculas orgânicas e protocélulas antes que surgissem bactérias capazes de produzir estromatólitos.

12.738 – Biologia – Peixes não Existem (?)


Cladograma_peixes
Existe um grupo de cientistas, apelidados de cladistas, que garantem que peixes não existem. Eles acreditam que a mera ideia de um grupo chamado “peixes” vai contra aquilo que sabemos sobre a evolução das espécies.
Para visualizar a história evolutiva do nosso planeta, os cientistas distribuem as espécies em árvores filogenéticas – Árvores da Vida -, que mostram como os seres se desenvolveram a partir de antepassados comuns. Um grupo de espécies que deriva de um mesmo antepassado forma um clado.
Essas bolinhas aqui em cima indicam antepassados comuns. Assim, mamíferos e répteis formam um clado pequeno a partir da bolinha à direita. Mas os clados podem ser ainda maiores, começando em qualquer uma dessas bolinhas. O problema é que os quatro primeiros grupos dessa imagem são todos chamados de “peixes”. Cada um deles pode ser considerado um clado separadamente. Mas se você tentar juntar todos em um grupo evolutivo só? Tem que apelar para o “mínimo múltiplo comum”, o antepassado mais antigo de todos eles.
Só que, nesse caso, o clado acaba incluindo também mamíferos, anfíbios e formas de vida radicalmente diferentes entre si. É como tentar encontrar semelhanças físicas entre primos com 5 graus de distância.
A conclusão dos cladistas é que então, segundo a classificação evolutiva, ou os peixes não existem, ou todos nós somos peixes.
Essa afirmação soa absurda, mas na realidade reflete uma disputa entre duas formas de classificar os seres vivos: o sistema taxonômico de Lineu (aquele que divide os seres em espécies, gêneros, famílias, ordens, classes e reinos) e o filogenético. Antes do desenvolvimento da Teoria da Evolução, a forma de estudar e classificar as espécies era muito mais visual: os cientistas examinavam ser a ser, então colocavam os mais parecidos (interna e externamente) nos mesmos “rankings” de classificação – que em geral, são os que aprendemos na escola.
Já a evolução acabou colocando em cheque a relação taxonômica entre seres que se parecem, mas estão em posições bastante diferentes na árvore filogenética da evolução. O peixe pulmonado, por exemplo, é pouco discernível de um bacalhau, mas tem um antepassado evolutivo comum mais recente com a vaca do que com o salmão. Assim, na taxonomia evolutiva, os dois peixes acabam separados. É o que os cladistas chamam de debate de “instinto versus ciência”.
Pode parecer um mero detalhe, mas classificações filogenéticas rigorosas ajudam os cientistas a entender – e a explicar – fatos bizarros, como a relação importante entre dinossauros e galinhas. Da próxima vez que for ao aquário, além de procurar o Nemo, vale se perguntar se aqueles peixinhos nadando lado a lado são “irmãos” darwinianos ou primos separados por milhares de anos de pressão evolutiva.

12.664 – Evolução – Macacos brasileiros entraram na Idade da Pedra há 700 anos


macaco-prego-idade-da-pedra
A humanidade não é mais a única espécie na Terra a entrar na Idade da Pedra.
Novos indícios indicam que, por volta de 700 anos atrás, macacos-prego no Brasil já usavam ferramentas para quebrar castanhas de caju e extrair a parte comestível.
“É o primeiro relato de ferramentas de macacos-prego no registro arqueológico”, disse o biólogo Tiago Falótico, pesquisador de pós-doutorado do Instituto de Psicologia da Universidade de São Paulo (IP-USP) à agência FAPESP.
Falótico realizou a pesquisa com Eduardo Ottoni. Ambos estudam o comportamento de macacos-prego e, especificamente, o uso de ferramentas por primatas da espécie Sapajus libidinosus. Nos últimos três anos, eles aprofundaram os estudos em uma em parceria com o arqueólogo Michael Haslam, da Universidade de Oxford, na Inglaterra.
O grupo fez escavações em uma área no Parque Nacional da Serra da Capivara e descobriu que os mesmos tipos de ferramentas observadas hoje aparecem em camadas correspondentes a um período que remonta ao século XIII, de acordo com artigo publicado no dia em 11 de julho na revista Current Biology.
Até agora, 69 ferramentas foram escavadas. As mais antigas datam de 600 a 700 anos de idade, o que significa que 100 gerações de macacas-prego, pelo menos, já usam ferramentas de pedra. Os pesquisadores acreditam que é uma questão de tempo até que ferramentas mais antigas sejam encontradas.
“É possível”, observa Haslam, “que os primeiros humanos a chegar aqui tenham aprendido sobre este alimento desconhecido após terem visto como era o processo dos macacos com o caju.” Então, neste caso, teriam sido os humanos que imitaram os primatas, e não o contrário.