14.023 – Como Funciona a Vela Solar?


velasolar
Velas solares são um tipo de propulsão que utiliza pressão de radiação para gerar aceleração. Elas são feitas de grandes espelhos membranosos de pouca massa que ganham momento linear ao refletirem fótons. A pressão de radiação à distância da Terra ao Sol é de aproximadamente 10−5 Pa[1] e é função inversa do quadrado da distância à fonte luminosa, se esta for pontual. Mesmo gerando aceleração de valor muito pequeno, velas solares são capazes de gerar aceleração constante por longos períodos e não requerem massa de reação, que geralmente totaliza uma fração significante da massa das espaçonaves que utilizam-na atualmente, possibilitando assim aumentar a carga útil da espaçonave e atingir grande velocidade. Várias tecnologias foram teorizadas a partir de velas solares de com usos para pequenas alterações de órbitas de satélites a propulsão de veículos espaciais para viagem interestelar.
Os conceitos científicos que embasam a tecnologia de velas solares são bem aceitos e difundidos, porém a tecnologia necessária para a construção viável de velas solares está em desenvolvimento, e missões espaciais baseadas em velas solares partindo de grandes agências ainda não foram executadas. Em 2005, em resposta à falta de interesse governamental, a organização Sociedade Planetária, movida por entusiastas, lançaria a espaçonave Cosmos 1, com propulsão baseada na tecnologia. Porém, o projeto fracassou pois houve uma falha no foguete que iria lançar a espaçonave de um Submarino, no Mar de Barents.
O conceito da tecnologia data desde o século XVII, com Johannes Kepler. Friedrich Zander na década de 1920 novamente propôs esse tipo de tecnologia, que tem sido gradualmente refinada. O intenso interesse recente de estudos científicos começou com um artigo do engenheiro e autor de ficção científica Robert L. Forward em 1984.
Posiciona-se um grande espelho membranoso que reflete a luz do Sol ou de outra fonte luminosa. A pressão de radiação gera uma pequena quantidade de impulsão ao refletir fótons. Inclinando a superfície reflexiva em certos ângulos para a fonte luminosa, gera-se propulsão em direção normal à superfície. Ajustes nos ângulos das velas podem ser feitos com a ajuda de pequenos motores elétricos, para que a vela se incline e possa gerar propulsão na direção desejada.
Teoricamente, também seria possível gerar aceleração em direção à fonte luminosa, contrariando o senso comum, ao desacoplar parte da vela e utilizá-la para concentrar luz numa face reflexiva oposta à fonte de luz.
Os métodos mais eficientes para utilizar velas solares envolvem manobras em direção à fonte de luz, onde a luz é mais intensa. Em meados da década de 1990 foi proposto um método que permite que uma espaçonave equipada com velas solares atinja velocidades de cruzeiro capazes de escapar do sistema solar a velocidades muito maiores do que as atingidas por outros métodos de propulsão avançados, como propulsão nuclear. Demonstrado matematicamente, esse modo de velejar foi considerado como uma das opções para viagens interestelares futuras pela NASA.

Esclarecendo:
Existe um mal-entendido que velas solares são movidas pelo vento solar, ou por partículas carregadas de alta energia do Sol. De fato, tais partículas gerariam impulso ao atingirem velas solares, porém esse efeito é pequeno comparado ao da pressão de radiação da luz: a força da pressão de radiação é cerca de 5.000 vezes maior do que aquela gerada pelo vento solar. Existem modelos propostos que se utilizariam do vento solar, porém precisariam ser muito maiores do que velas solares convencionais.
Outros também teorizam que o princípio das velas solares violaria o princípio da conservação de energia. Esse não é o caso, já que os fótons perdem energia ao atingir os espelhos de uma vela solar ao passarem por desvio Doppler: seu o comprimento de onda aumenta, diminuindo sua energia, em função da velocidade da vela – uma transferência de energia dos fótons solares para a vela. A energia adquirida soma momento à vela.
Atualmente, painéis de controle de temperatura, coletores solares e outras partes móveis são utilizados ocasionalmente como velas solares improvisadas, para ajudar espaçonaves comuns a fazer pequenas correções ou modificações na órbita sem utilizar combustível.
Algumas até tiveram pequenas velas construídas propositalmente para esse uso. Satélites Eurostar da EADS Astrium utilizam velas solares ligadas a seus painéis solares para realizar tarefas de ajuste de momento angular, economizando combustível (esses satélites acumulam momento angular através do tempo e comumente giroscópios são utilizados para controlar a orientação da espaçonave). Algumas espaçonaves não tripuladas, como a Mariner 10, utilizaram velas solares para estender sua vida útil.
Robert L. Forward mostrou que uma vela solar poderia ser utilizada para manipular a órbita de um satélite. Velas solares poderiam, no limite, ser utilizadas para manter um satélite sobre um pólo da Terra. Espaçonaves com velas solares também poderiam ser posicionadas em órbitas próximas ao Sol que seriam estacionárias tanto em relação com a Terra ou com o Sol, que Forward nomeou de ‘satatite’, em referência à estaticidade relativa da espaçonave. Isso seria possível pois a propulsão gerada pela vela cancela a força gravitacional exercida sobre a trajetória desejada. Uma dessas órbitas poderia ser útil para estudar as propriedades do Sol por longos períodos: uma dessas espaçonaves poderia teoricamente ser posicionada diretamente acima de um pólo do Sol e permanecer naquela posição por períodos prolongados.
Forward também propôs o uso de lasers para impulsionar velas solares. Um feixe suficiente poderoso expondo uma vela solar por tempo suficiente poderia acelerar uma espaçonave até uma fração significante da velocidade da luz. Essa tecnologia, porém, iria requerer lasers incrivelmente poderosos, lentes ou espelhos gigantescos.

Assista o vídeo:

13.989 – Lançamento do Foguete da Space X


spacex-1200x630
Após adiamento, o lançamento do “foguete mais potente do mundo” de Elon Musk deve aconteceu às 19h35 desta quinta-feira
O foguete Falcon Heavy, da SpaceX, faz nesta quinta-feira seu primeiro lançamento comercial. A aeronave foi construída pela empresa de Elon Musk para levar cargas pesadas ao espaço. Após sucesso em teste com um carro da Tesla, em 2018, o veículo agora vai levar um satélite de telecomunicações Arabsat-6A de seis toneladas.
O lançamento, que acontece na base da NASA na Flórida, estava previsto para a última quarta-feira, mas foi adiado devido aos fortes ventos na região. De acordo com a última atualização da SpaceX, a decolagem está marcada para às 19h35 (de Brasília) desta quinta-feira.
Segundo previsão da SpaceX, após 34 minutos do lançamento, o satélite será desacoplado para a órbita terrestre. As três partes do foguete Falcon Heavy vão pousar em diferentes zonas, definidas pela equipe responsável pela missão na Flórida e também no Oceano Atlântico.
O Falcon Heavy é apresentado pela SpaceX como “o foguete mais potente do mundo”. Ele tem 70 metros de altura, 12 metros de largura total e pesa 1420 toneladas. Sua impulsão no lançamento corresponde a de aproximadamente 18 aeronaves Boeing 747 em potência máxima.
A SpaceX, empresa privada fundada pelo bilionário sul-africano Elon Musk, segue em passos acelerados para desenvolver um programa espacial capaz de levar os primeiros humanos a Marte. Na última semana, Musk publicou uma foto do foguete Starship (Nave Estelar em tradução livre), que já estaria instalado em uma base de testes no estado norte-americano do Texas. “Essa é uma foto de verdade, não uma montagem”, escreveu o empreendedor em suas redes sociais.

A nave, que lembra um foguete saído da ficção científica, foi remodelada desde que Musk revelou seu planos de construir um novo equipamento espacial. Inicialmente chamado de BFR (Big Falcon Rocket, em que normalmente a palavra “Falcon” era substituída por um palavrão em inglês), o veículo ganhou o nome mais amigável de Starship.

A espaçonave será o maior e mais poderoso transporte espacial já desenvolvido. Em sua extensão total, o foguete terá 118 metros de extensão. Equipado com um cojunto de motores, o módulo de exploração espacial será capaz de abrigar até 100 pessoas com segurança.

Os sete motores da Starship, que já estão em testes, permitirão que a nave consiga aterrissar e decolar em segurança a partir de diferentes superfícies, como na Lua ou em Marte. O equipamento conta com tecnologias utilizadas nos principais protótipos e foguetes desenvolvidos pela SpaceX nos últimos anos, como as naves Dragon e os foguetes Falcon 9 e Falcon Heavy.

13.983 – Hibernação – Acorde, você chegou em Marte


_marte_2
Eram seis homens vivendo juntos, espremidos em uma área de 72 metros quadrados, ao longo de 520 dias. Eles estavam trancados numa estação de testes em Moscou – mas a ideia da experiência, realizada pela Academia Russa de Ciências entre 2010 e 2011, era simular uma ida a Marte. O time era formado por três russos, um italiano, um francês e um chinês. Eles tinham de responder a testes e cumprir uma rotina de tarefas, e passavam as horas de folga vendo filmes e jogando videogame. Se davam bem. Mas, conforme o tempo foi passando, o clima mudou. Todos foram se tornando apáticos, e quatro dos seis participantes se isolaram – cada um deles passou a se alimentar sozinho, teve insônia e exibiu claros sinais de depressão. Tudo isso numa missão de mentirinha, sem riscos nem problemas reais. Imagine se fosse no meio do espaço.
Enviar humanos a Marte, como a Nasa pretende fazer na década de 2030, exigirá a superação de vários obstáculos. Mas nenhum deles parece tão complexo, e tão intratável, quanto a questão psicológica. O confinamento prolongado, como a experiência russa deixou claro, mexe com a cabeça. É por isso que, nos filmes de ficção científica, os astronautas são colocados em hibernação e só acordam quando estão perto do destino. Por incrível que pareça, a Nasa cogita essa possibilidade na vida real: encomendou a uma empresa de Atlanta, a SpaceWorks Enterprises, um estudo detalhadíssimo sobre o tema. O documento descreve com precisão todas as etapas do processo – e as tecnologias que poderiam ser usadas em cada uma.
Logo ao embarcar na nave, antes do lançamento, os astronautas se dirigiriam às cabines de hibernação, Receberiam sedativos na veia e dormiriam. Em seguida, um tubinho enfiado no nariz de cada astronauta começaria a liberar gotículas de perfluorocarbono, um líquido inerte e gelado que, em contato com a mucosa nasal, reduz a temperatura do organismo. O interior de cada cabine também seria mantido a temperaturas baixas. Seis horas depois, a temperatura corporal dos astronautas teria baixado para 32 oC – e eles entrariam em estado de hibernação.
A respiração e os batimentos cardíacos ficariam mais lentos, com o organismo gastando menos energia. Sondas conectadas a dois pontos do corpo, no peito e na perna, jogariam na corrente sanguínea uma solução contendo vitaminas, aminoácidos, glicose e minerais necessários para a sobrevivência. Também haveria uma máquina gerando oxigênio e filtrando o gás carbônico eliminado pela respiração. Cada astronauta seria monitorado por um braço robótico, capaz de intervir em caso de problemas – os sensores colados no corpo da pessoa poderiam parar de funcionar e precisar ser substituídos, por exemplo, ou os tubos de coleta de urina poderiam vazar (como os astronautas só receberiam alimentação intravenosa, não haveria produção de fezes).
Para evitar que os músculos dos astronautas se degradassem, o ambiente seria pressurizado e também teria gravidade artificial. Ela seria produzida rotacionando o habitáculo – como na famosa cena da centrífuga no filme 2001 – Uma Odisseia no Espaço. A SpaceWorks calcula que girar o compartimento a 17 km/h seria o suficiente para gerar força centrífuga equivalente à gravidade terrestre (quando a nave estivesse chegando a Marte, a rotação do habitáculo seria reduzida para 10,8 km/h, simulando a menor gravidade do planeta vermelho).
O cenário descrito pela SpaceWorks é bem impressionante. Mas puramente hipotético. Se a Nasa realmente quiser colocar humanos para hibernar, terá de correr vários riscos, que também estão previstos no estudo – e não são pequenos.
SISTEMA DE GERENCIAMENTO DE TEMPERATURA
Um tubo inserido nas narinas dispara um spray de perfluorocarbono, líquido inerte e gelado. Em contato com a mucosa nasal, ele reduz a temperatura corporal, até chegar a 32 oC.

TUBO DE ALIMENTAÇÃO
Duas sondas, ligadas no peito e na perna, enviam uma solução que inclui glicose, aminoácidos e vitaminas. Esse líquido é parecido com o que os pacientes em coma recebem nos hospitais.

COLETORES DE URINA
A coleta acontece com o uso de um dreno, fixado no corpo dos astronautas antes de a viagem começar. Ela pode ser reciclada e reaproveitada (como já acontece na Estação Espacial Internacional).

SENSORES
Vigiam os batimentos cardíacos, a respiração, o funcionamento de órgãos importantes, como o fígado, e a atividade do sistema nervoso. Também monitoram o possível surgimento de elementos perigosos, como infecções ou coágulos sanguíneos.

BRAÇOS ROBÓTICOS
São capazes de trocar sondas, consertar vazamentos e solucionar pequenos problemas. Em casos mais graves, com risco à saúde da pessoa que está hibernando, o sistema emite um alerta para os astronautas que estão acordados.
A hibernação é uma estratégia de sobrevivência conhecida na natureza. Morcegos a praticam, assim como roedores e ursos. Esse tipo de repouso permite que o corpo equilibre sua temperatura com a do ambiente e reduz o gasto de energia (algo essencial para a sobrevivência nas estações do ano em que não há alimento). O que você talvez não saiba é que a medicina já domina, e pratica, uma espécie de hibernação em humanos.
Trata-se da hipotermia terapêutica, uma técnica de resfriamento corporal usada, há quase 20 anos, por paramédicos para socorrer vítimas de infarto, derrames ou ferimentos graves. Quando isso acontece, a circulação é prejudicada ou interrompida, e as células do organismo começam a morrer por falta de oxigênio. Nessa situação, esfriar o corpo é benéfico, porque reduz a velocidade de morte celular e aumenta exponencialmente as chances de sobrevivência. A temperatura pode ser reduzida colocando bolsas geladas sobre o paciente ou injetando nele uma solução salina gelada (água e cloreto de sódio, cloreto de cálcio, cloreto de potássio e lactato de sódio), que resfria o corpo rapidamente e sem provocar danos. Nas cabines espaciais, a hipotermia seria induzida de outra forma: com a RhinoChill, uma máquina que resfria o organismo pela mucosa nasal – e já é utilizada por paramédicos dos EUA em situações de emergência. O princípio é o mesmo. “Os seres humanos não hibernam naturalmente. Mas existem métodos capazes de induzir estados de torpor”, diz a bioquímica Kelly Drew, da Universidade do Alasca. Nos hospitais, a redução de temperatura não costuma durar mais do que 24 horas. “Com a tecnologia atual, é possível manter humanos saudáveis em temperaturas entre 32 oC e 34 oC, por até três dias. Períodos mais longos só foram registrados em pacientes com alto risco de morte”, diz Drew.
1 Aumento dos voos suborbitais tripulados, em parceria com companhias privadas.

2 Testes de microgravidade na ISS, para entender como o corpo humano reage a ela
em períodos longos.

3 Desenvolvimento de tecnologias avançadas de suporte vital (como um sistema que recicla 100% do CO2 expirado pelos astronautas).

4 Retomada das missões tripuladas para a Lua e construção da Deep Space Gateway, estação espacial da qual partiriam missões a Marte.

5 Construção da Deep Space Transport, uma estação de habitação. Astronautas viveriam nela por 400 dias para testá-la.

6 Realização de viagens não tripuladas a Marte, para levar equipamentos e testar decolagens do solo marciano.

7 Quatro astronautas vão até Phobos, principal lua de Marte (pois, de lá, é mais fácil voltar). Seis anos depois, uma missão pousa no planeta vermelho.

O recorde de hibernação terapêutica pertence a uma mulher de 43 anos, moradora da Flórida, que sofreu um aneurisma e entrou em coma. Ela foi mantida em hibernação por 14 dias, e sua temperatura só foi normalizada quando não havia mais hemorragia no cérebro. A paciente sobreviveu ao procedimento; mas correndo risco considerável.
No espaço, o resfriamento corporal teria de ser mantido por muito mais tempo – o ideal seria 200 dias seguidos de hibernação, cobrindo a maior parte do percurso até Marte. “Na natureza, existem animais que suportam períodos longos, de vários meses. Em humanos, ainda não sabemos quais as consequências do torpor induzido por mais de duas semanas”, admite John Bradford, presidente da SpaceWorks.
Por isso, a primeira meta é mais modesta. O projeto prevê que todos os astronautas se revezem em períodos de hibernação de 8 a 14 dias, para que nenhum deles ultrapasse o período já estudado pela ciência. Essa estratégia também garante que sempre haja algum humano acordado e consciente a bordo, o que seria útil em caso de pane nos computadores que controlam a hibernação ou se algum astronauta passar mal durante o estado de torpor – o que pode acontecer. A diminuição da circulação sanguínea, por exemplo, pode provocar embolias (obstrução dos vasos sanguíneos que pode levar à morte). A hibernação reduz a atividade dos glóbulos brancos, deixando o astronauta mais vulnerável a infecções – inclusive porque ele está em situação de risco, com agulhas e cateteres espetados por todo o corpo. As alterações no metabolismo podem provocar hipoglicemia e matar. E, mesmo com a gravidade artificial gerada pela rotação da nave, a falta de atividade física pode provocar atrofia muscular.
Para cada um desses problemas, existe uma resposta. O risco de embolia, por exemplo, pode ser reduzido com injeções regulares de heparina, uma substância que ajuda a dissolver coágulos. É possível prevenir infecções limpando bem os equipamentos ligados aos corpos dos astronautas. Já a atrofia pode ser evitada aplicando choques elétricos de baixa intensidade nos músculos, para mantê-los devidamente tonificados. Mas ninguém sabe quão bem tudo isso funcionaria na prática, nem como os astronautas se sentiriam ao despertar.
Não é agradável voltar da hibernação. Os animais que a praticam costumam acordar extremamente cansados, tendo a necessidade de voltar a dormir logo em seguida. No habitáculo da SpaceWorks, a estratégia seria aumentar a temperatura gradualmente e cortar aos poucos o fornecimento do RhinoChill. O processo seria ainda mais lento do que o resfriamento, podendo levar até oito horas.
Mas, mesmo que todos os aspectos fisiológicos sejam controlados, a questão psicológica continuará uma incógnita. Até hoje, todos os humanos submetidos à hibernação forçada estavam muito doentes, à beira da morte. Não dá para saber como um astronauta saudável e plenamente lúcido reagiria ao processo. Só mesmo testando na prática. E há um grande incentivo para isso. Com a hibernação, viagens espaciais longas se tornariam mais viáveis – e a humanidade poderia ir mais longe.

A economia de recursos
Dependendo da posição da Terra e de Marte em suas trajetórias em torno do Sol, a distância entre os dois planetas varia de 55 a 401 milhões de quilômetros. Se iniciada no momento certo, quando os planetas estão mais próximos um do outro, a ida levaria seis a oito meses. Somando o tempo na superfície do planeta mais o tempo da volta, uma missão poderia levar quase dois anos. Isso significa que a nave precisaria levar grande quantidade de combustível e suprimentos – e pesaria no mínimo 300 toneladas, contra as 120 toneladas das missões à Lua. E é aí que a hibernação entra. Ela permite viajar com muito menos coisas, em naves bem menores e mais leves.
Na Estação Espacial Internacional, os astronautas dormem em cabines com sacos de dormir presos às paredes. Não é nenhum luxo. Mas parece uma mansão perto do “habitáculo” imaginado pela SpaceWorks, que é 75% menor, pesa 50% a menos, e também gasta menos energia: precisa de apenas 30 kW para se manter, contra 50 kW das cabines da ISS. Além disso, seu consumo de oxigênio é 75% menor, e o de água é 50% mais baixo.
Essas contas batem com as estimativas da European Space Agency (ESA), que em 2018 publicou um artigo sobre hibernação espacial. Segundo a agência, o uso dessa técnica numa missão a Marte reduziria em 42,5% a quantidade total de suprimentos necessários e também ajudaria a proteger os astronautas da radiação cósmica, que pode causar câncer e é um problema sério em missões longas. “Estudos em animais mostraram que a hibernação aumenta a proteção contra radioatividade”, afirma a ESA. Isso supostamente acontece porque a hibernação desacelera a reprodução celular (que é vulnerável a mutações causadas por radiação).
A SpaceWorks se diz pronta. “Poderíamos começar a operar em pouco tempo, enviando missões para Marte com quatro a seis integrantes”, afirma John Bradford. A empresa jura que seu sistema de hibernação poderia manter seis pessoas no espaço por até 900 dias com apenas 1,6 tonelada de alimentos e medicamentos, contra as 13,1 toneladas necessárias numa cápsula comum. Ela também estuda cenários ainda mais radicais. Em 2015, apresentou um protótipo de 10×8,5 metros, que seria capaz de transportar 48 astronautas numa eventual missão de colonização.
Mas a Nasa vê a ideia com cautela. Em 2015, o biólogo Yuri Griko, que dirige o departamento de biociências da agência, pediu para fazer uma experiência (ele queria fazer voos experimentais com animais em hibernação), e não obteve autorização. Em 2016, a Nasa assinou um novo contrato com a SpaceWorks para que a empresa continue as pesquisas – mas não permitiu que ela realizasse um teste de hibernação forçada em porcos, como desejava. Ou seja: a hibernação espacial vai demorar. Mas pode se tornar realidade um dia. E atravessar o Sistema Solar sem sentir, com a leveza de quem acaba de acordar, terá deixado de ser apenas um sonho.

hibernação marte

si_399_marte_4-1

13.966 – Por que os Planetas são Redondos?


terra e lua
A esfera é a mais estável de todas as formas geométricas encontradas na natureza e, por isso, as partículas necessitam da menor quantidade de energia para chegar a esse formato.
Mas o que torna a esfera tão estável? “Ela é a única figura onde todos os pontos da superfície estão à mesma distância do núcleo”. Para os planetas, isso é imprescindível.
Como são corpos com uma quantidade enorme de massa, eles têm um campo gravitacional fortíssimo, que suga tudo para o seu centro. Assim, o formato esférico é a única maneira de garantir que o que está na superfície não seja sugado para o centro do planeta pela força da gravidade.
Os planetas, no entanto, não são esferas perfeitas. A distorção no formato original acontece por causa do movimento de rotação, que os achata um pouco perto dos pólos.

13.955 – Maior superlua de 2019 ocorre nesta terça-feira, 19 de fevereiro


lua de sangue
Depois da superlua de sangue, que ocorreu no dia 21 de janeiro, o céu será novamente iluminado por uma superlua na terça-feira, 19 de fevereiro. O evento não é tão raro quanto o fenômeno astronômico do mês passado, um eclipse lunar total que coincidiu com a Lua estar no ponto mais próximo da Terra. Mas será imperdível mesmo assim, pois será a maior superlua do ano — e a estimativa é que só em 2026 o satélite apareça tão grande quanto.
Na data, a Lua estará na fase cheia e no perigeu — ponto mais próximo da Terra — a 356.761 quilômetros de distância do nosso planeta. É tão perto que alguns astrônomos o chamam de perigeu extra-próximo. Embora atinja o perigeu às 7h09 no horário de Brasília, ela só estará completamente cheia a partir das 13h54, o que ajuda a aumentar o efeito do fenômeno.
O termo superlua não é um nome astronômico oficial. Ele foi cunhado em 1979, pelo astrólogo americano Richard Nolle, que a definiu como “uma Lua nova ou cheia que ocorre quando a Lua está na ou próxima (a pelo menos 90%) de sua maior proximidade da Terra”. O porquê ele escolheu os 90%, porém, não é claro.
Além do fenômeno astronômico principal da semana, na segunda-feira, 18, será possível observar alguns planetas a olho nu. Antes do nascer do Sol, haverá uma conjunção entre Vênus e Saturno a sudeste, na constelação de Sagitário. Após o pôr do sol, Mercúrio ficará visível no horizonte ocidental.

13.941 – Astronomia – Colisão que gerou a Lua nos deu os elementos da vida na Terra


lua choque
Estudo aponta que substâncias voláteis, como carbono, enxofre e nitrogênio, surgiram no planeta em consequência do impacto que formou o satélite natural.
A similaridade entre compostos encontrados aqui e no nosso satélite natural indicam que esses elementos foram gerados simultaneamente (Arek Socha/Pixabay)
Ao se chocar com a Terra no impacto que resultou na formação da Lua, um corpo do tamanho de Marte entregou ao nosso planeta alguns dos elementos voláteis essenciais à vida que temos até hoje, como o carbono, o enxofre e o nitrogênio. É isso que afirma um novo estudo publicado ontem (25) no periódico científico Science Advances.
De acordo com os autores, essa possibilidade explicaria a quantidade e distribuição desses elementos na composição da hidrosfera, atmosfera, crosta e manto terrestres. Para consolidar a ideia, os cientistas organizaram testes a alta pressão e temperatura, construíram modelos termodinâmicos e fizeram simulações numéricas.
Segundo eles, as similaridades entre as composições isotópicas do nitrogênio e do hidrogênio encontrados na Lua e na Terra sugerem que os elementos voláteis presentes em ambas tenham uma origem comum. Ou seja, a pesquisa aponta que a maior probabilidade é de que o impacto que formou nosso satélite lunar deixou, tanto aqui quanto lá, alguns desses componentes químicos, como carbono, enxofre e nitrogênio. Estes depois se combinaram para dar fruto a bactérias, plantas, animais e todos nós.

13.915 – Sonda chinesa pousa no lado oculto da Lua pela primeira vez na história


sonda chinesa
A sonda espacial chinesa Chang’e 4 pousou, nesta quinta-feira (3), no lado oculto da Lua — a parte do satélite que não é visível da Terra. Segundo a Administração Nacional Espacial da China, é a primeira vez na história que este pouso é realizado. As informações são das agências de notícias EFE, Associated Press, e da Rede Global de Televisão da China (CGTN, em inglês).
A nave, que tem um módulo e um ‘rover’ — veículo de exploração espacial — deve estudar a composição mineral, o terreno, relevo e a manta da superfície lunar, a camada abaixo da superfície. Também deve realizar observações astronômicas por meio de baixas frequências de rádio, a chamada radioastronomia.

“O lado oculto da Lua é um raro lugar calmo, que está livre da interferência de sinais de rádio vindos da Terra”, afirmou o porta-voz da missão, Yu Gobin, segundo a agência de notícias estatal Xinhua News. “Essa sonda pode preencher o vazio de observação de baixa frequência na radioastronomia, e irá fornecer informações importantes para estudar a origem das estrelas e da evolução da nébula [solar]”.
A alunagem [aterrissagem na superfície lunar], realizada às 0h26 (horário de Brasília), “abriu um novo capítulo na exploração humana da Lua”, afirmou a agência espacial chinesa. O local exato do pouso foi a cratera Von Karman, no polo sul lunar, que tem 186 quilômetros de diâmetro e 13 quilômetros de profundidade. Segundo a AP, cientistas chineses acreditam que pousar nessa cratera possibilitaria coletar novas informações sobre a manta da Lua.
O lado oculto da Lua é relativamente pouco explorado e tem uma composição diferente daquela do lado “próximo”, que pode ser visto da Terra, e onde outras naves já pousaram. Países como a antiga União Soviética, os Estados Unidos e até mesmo a própria China já haviam realizado missões desse tipo.
De acordo com a Nasa, a agência espacial americana, essa parte do satélite foi observada pela primeira vez em 1959, quando a nave soviética Luna 3 enviou as primeiras imagens. Em 1962, os Estados Unidos tentaram enviar uma missão não tripulada ao lado oculto da Lua, que não deu certo, segundo a EFE.
O objetivo do programa Chang’e, que começou com o lançamento de uma primeira sonda orbital em 2007, é uma missão tripulada à Lua a longo prazo, ainda sem data definida. A primeira missão espacial tripulada da China foi em 2003 — o terceiro país a realizar uma depois de Rússia e Estados Unidos. O país também colocou duas estações espaciais em órbita e planeja lançar um ‘rover’ em Marte no meio da década de 2020.

china foguete

13.903 – Astronomia – Descoberta de Asteroide


asteroide 2018
Uma pesquisadora da Universidade Estadual Paulista (Unesp) de Rio Claro (SP) descobriu que um asteroide de cerca de dois quilômetros de diâmetro está na mesma órbita de Júpiter, mas em trajetória contrária ao planeta.
O artigo da portuguesa Maria Helena Morais foi publicado na Nature, uma das principais revistas científicas do mundo, e vai ajudar no estudo de órbitas de outros asteroides, inclusive os que passam perto do planeta Terra.

Asteroide 2015 BZ509
A pesquisa durou quatro anos e contou com pesquisadores de vários países. Tanto o asteroide, batizado de 2015 BZ509, quanto o planeta Júpiter levam 12 anos para dar uma volta ao redor do Sol e, a cada seis anos, eles se aproximam, mas não colidem.
Segundo Maria Helena, este tipo de órbita com movimento contrário pode existir em sincronia com outros planetas no mesmo período da órbita em torno do Sol.
‘’Isso é devido à gravidade do planeta, que consegue manter estas órbitas nestas posições que são posições de equilíbrio’’, disse a pesquisadora.
A descoberta deve ajudar nas pesquisas de outras órbitas de asteroides. ‘’É muito importante monitorar os objetos que se aproximam da Terra. Claro que sempre tem um risco de haver uma colisão. Isso vai acontecer um dia, já aconteceu no passado’’, afirmou Maria Helena.
“Por enquanto não há risco, não é para ficar preocupado, mas a gente tem que continuar de olho no céu para avistar esse tipo de asteroides que podem ser perigosos”, completou Rojas.

13.902 – Astronomia – A Sonda Parker


sonda parker
Em alusão ao repórter Peter Parker (o homem aranha)
A sonda Parker é uma sonda espacial produzida pela Nasa que foi lançada no dia 12 de agosto de 2018 rumo ao Sol. Entre os seus objetivos, está a exploração da atmosfera do Sol a fim de que se possa entender melhor o comportamento dos ventos e tempestades solares.

Missão Parker
Estimado em cerca de 1,5 bilhão de dólares, o projeto da Nasa de enviar um laboratório móvel para os arredores do Sol surgiu em 2008. Na época, a missão tinha o nome de Solar Probe, mas foi rebatizada em homenagem ao astrofísico estadunidense Dr. Eugene Newman Parker, responsável por importantes descobertas acerca do comportamento dos ventos solares. Na época em que o projeto foi concebido, diversas barreiras tecnológicas precisavam ser vencidas: uma delas era a concepção de um sofisticado sistema de refrigeração e um escudo térmico para a sonda.
Para observar a coroa solar, a sonda deve chegar o mais perto do Sol que qualquer outro objeto já construído por um ser humano chegou: 6,1 milhões de quilômetros. Levando em consideração as distâncias espaciais, isso é como passar “raspando” no Sol.
A essa distância do Sol, as temperaturas atingem facilmente os 1337 ºC. Nessas condições extremas, os delicados circuitos internos da sonda seriam completamente destruídos se não fosse um escudo de carbono com 12 cm de espessura instalado na sua parte frontal, além de um eficiente sistema de refrigeração, capaz de manter sua temperatura interna em cerca de 29 ºC.
Outro recorde será batido pela sonda: ela será o objeto mais rápido já criado pelo homem. Durante sete anos (a duração estimada da missão é de 6 anos e 321 dias), a sonda será gradualmente acelerada pela gravidade de Vênus em direção à coroa solar. No auge de sua aproximação, estima-se que sua velocidade chegue a 700.000 km/h.
A data original de lançamento da sonda Parker estava marcada para o dia 11 de agosto de 2018, no entanto, em virtude de um mau funcionamento de um de seus sistemas de refrigeração, o lançamento foi adiado para o dia seguinte.
Um dos objetivos da sonda Parker é traçar como o calor e outras formas de energia propagam-se na coroa solar, além de tentar descobrir a causa da grande aceleração sofrida pelo vento solar ao adentrar a região da coroa.
As variações nos ventos solares presentes na coroa solar causam diversos distúrbios eletromagnéticos, os quais podem afetar os sistemas de telecomunicações terrestres, geralmente instalados em satélites. Entender o comportamento da coroa solar significa, portanto, aprender uma forma de prever e preparar-se melhor para a ocorrência desses fenômenos problemáticos.

Além disso, o Sol é a estrela mais próxima da Terra e a única que pode ser estudada tão detalhadamente. Entendendo mais sobre o Sol, será possível aprender mais coisas sobre outras estrelas longínquas.
Estágios da missão
A sonda foi lançada no dia 12 de agosto de 2018 por um potente foguete, o Delta IV-Heavy with Upper Stage, no Cabo Canaveral, no estado da Flórida, Estados Unidos. Ao meio-dia de 16 de agosto, a sonda já estava a 4,6 milhões de quilômetros da Terra, movendo-se a 62.000 km/h. Na madrugada de 3 de outubro de 2018, a sonda terá sua trajetória levemente alterada pela gravidade de Vênus, deslocando-se em direção à coroa solar, onde deverá chegar no dia 5 de novembro de 2018.
A sonda Parker conta com diversos instrumentos de medida diferentes. Esses instrumentos são alimentados pela eletricidade gerada pelas placas solares da sonda, capazes de produzir até 343 W de potência. Um deles é um conjunto de cinco antenas, instaladas atrás do escudo térmico e responsáveis pela comunicação da sonda com a Terra. A sonda também é equipada com diversos magnetômetros: instrumentos capazes de medir a intensidade do campo magnético local, além de sensores de campo elétrico e termômetros.
A sonda Parker conta com diversos instrumentos de medida diferentes. Esses instrumentos são alimentados pela eletricidade gerada pelas placas solares da sonda, capazes de produzir até 343 W de potência. Um deles é um conjunto de cinco antenas, instaladas atrás do escudo térmico e responsáveis pela comunicação da sonda com a Terra. A sonda também é equipada com diversos magnetômetros: instrumentos capazes de medir a intensidade do campo magnético local, além de sensores de campo elétrico e termômetros.
A missão é tentar esclarecer três dúvidas principais sobre a física do Sol: como a atmosfera exterior ao Sol, que recebe o nome de coroa, é aproximadamente 300 vezes mais quente que a camada de superfície logo abaixo? Como o vento ganha velocidade tão rapidamente? Como algumas das partículas mais energéticas do Sol se afastam a mais da metade da velocidade da luz?
Para responder estas questões, a sonda, que é do tamanho de um carro, leva a bordo quatro instrumentos para captar dados. A Parker Solar Probe deve seu nome a Eugene Parker, o físico que fez a primeira teoria sobre a existência do vento solar, em 1958.

parker 2
A PSP foi projetada especialmente para suportar temperaturas extremamente elevadas e radiação, com uma blindagem resultante de anos de pesquisa. Foi construída com um escudo espacial com 11,43 centímetros de espessura, material que deve suportar temperaturas superiores a 1,3 mil°C — a superfície do Sol pode chegar a 5,5 mil°C, e a coroa, atmosfera externa, milhares a mais.
— Esta é a primeira missão da Nasa a ser nomeada por um indivíduo vivo. O revolucionário artigo de Gene Parker previu o aquecimento e a expansão da coroa e do vento solar. Agora, com a Parker Solar Probe, podemos realmente entender o que impulsiona esse fluxo constante até a borda da heliosfera — falou Nicola Fox, diretora da Divisão de Heliofísica da Nasa, em Washington.

13.892 – Até tu, Brutus? Neil deGrasse Tyson é investigado por assédio sexual


neil-de-grasse-tyson
A Fox e os produtores do programa de ciência popular Cosmos anunciaram na última sexta-feira (30) que estão investigando as acusações de abuso sexual que foram feitas por três mulheres contra o astrofísico Neil deGrasse Tyson.

Este casos foram expostos por um site chamado Patheos, que descreveu as acusações.

1980
O primeiro caso teria acontecido no início dos anos 1980, com Tchya Amet, que estudou com Tyson na universidade. Ela diz que foi sexualmente abusada por ele no apartamento dele.

2009
A segunda acusação é de Katelyn Allers, professora de física e astronomia da Universidade Bucknell, que relatou ter sido agarrada por Tyson em uma festa em 2009. Ela pediu uma foto com Tyson e ele notou uma tatuagem em seu ombro do sistema solar, que ia do braço até as costas e clavícula.

“Depois que tiramos a foto, ele notou minha tatuagem e meio que me agarrou para olhá-la, e ficou obcecado para saber se Plutão estava nela ou não… aí ele procurou por Plutão, e seguiu a tatuagem para dentro do meu vestido”, relata ela. “Minha expediência com ele é que ele não é alguém que tem muito respeito pela autonomia corporal feminina”, disse ela ao site Patheos.

2018
A acusação mais recente é de Ashley Watson, uma ex-assistente de Tyson em um documentário, que diz que ela foi forçada a abandonar seu trabalho por conta de avanços sexuais inapropriados por parte dele. Eles trabalharam juntos por meses, e ela diz que ele a colocou em uma situação desconfortável ao tentar convencê-la a ter relações sexuais.
Watson diz que ele a convidou para tomar vinho no apartamento dele depois do trabalho e que ele tirou a camisa e ficou de regata enquanto cortava queijos em uma tábua e fazia piadas de mal gosto sobre esfaquear alguém. Ela diz que aquilo foi só uma piada ruim, mas que pareceu um movimento para reforçar poder.
Quando ela estava saindo, ele mostrou para ela um aperto de mão dos nativo-americanos que envolvia apertar com força a mão da outra pessoa, manter contato visual e colocar o dedão no pulso do outro para sentir os batimentos cardíacos. Depois ele teria colocado suas mãos nos ombros dela e dito que ele queria abraçá-la, mas se ele fizesse isso, ele “ia querer mais”.
No dia seguinte ela o procurou no trabalho para dizer que não ficou confortável com a interação da noite anterior, e decidiu desistir do trabalho. Segundo Watson, ela contou o motivo para um superior para que ele não contratasse mais mulheres para aquela vaga. Ela também relatou sua história para um número de denúncias, para que ela ficasse registrada caso outras pessoas o acusassem de abuso sexual.
A resposta de Neil deGrasse Tyson
Tyson ficou em silêncio por um dois depois que as primeiras acusações se espalharam pela internet. Mas no sábado resolveu publicar sua versão dos fatos. Confira abaixo sua resposta às acusações:
“Por variados motivos, a maioria dos homens acusados de abuso sexual no clima ‘me too’ atual são encarados como culpados pela corte da opinião pública. Emoções se sobrepõem ao processo correto, e as pessoas escolhem lados, e as guerras das redes sociais começam.
Em qualquer acusação as evidências importam. Evidência sempre importa. Mas o que acontece quando é apenas a palavra de uma pessoa contra a de outra, e as histórias não batem? É aí que as pessoas tendem a julgar quem é mais crível que a outra pessoa. E é quando uma investigação imparcial pode servir a verdade – e teria minha cooperação total para fazer isso.
Recentemente fui acusado publicamente de assédio sexual. Essas acusações receberam quantidade grande de atenção da mídia nas últimas 48 horas, sem serem acompanhadas por minhas reações. Em qualquer caso, não é culpa da mídia. Eu neguei comentário com base na ideia de que acusações sérias não deveriam ser julgadas na mídia. Mas claramente eu não posso continuar em silêncio. Então abaixo seguem a minha versão de cada acusação.

O incidente de 2009
Milhares de pessoas por ano pedem para tirar fotos comigo. É uma tarefa bajulante, que consome tempo, mas que é encantadora. Como muitos de meus fãs podem confirmar, eu fico quase tonto quando noto que eles estão usando algum acessório cósmico – roupas ou joias ou tatuagens que mostram o universo, seja cientificamente ou artisticamente. E é sempre minha prioridade apontar para esses enfeites na fotografia.
Uma colega que participou de um encontro social depois de um congresso me pediu por uma foto. Ela estava vestindo um vestido sem mangas e tinha um sistema solar em seu braço. Apesar de não me lembrar explicitamente de procurar por Plutão no seu ombro, isso me parece uma coisa que eu teria feito naquela situação. Como todos sabem, eu tenho um histórico profissional com o rebaixamento de Plutão, que tinha acontecido apenas três anos antes. Então é de grande interesse para mim saber se as pessoas o incluem em suas tatuagens ou não. Eu foi acusado de a ter “apalpado” e de ter procurado embaixo do seu vestido, quando foi simplesmente uma procura na parte coberta de seu ombro em um vestido sem mangas.
Eu acabei de ficar sabendo (nove anos depois) que ela achou meu comportamento assustador. Nunca foi minha intenção e estou profundamente arrependido de ter feito ela se sentido daquela forma. Se eu tivesse sido informado do seu desconforto naquele momento, eu teria oferecido o mesmo pedido de desculpas intenso, naquele momento. Aos meus olhos, eu sou um cara amigável e acessível, mas de agora em diante vou ser mais sensível quando ao espaço pessoal das pessoas, mesmo no meio do meu entusiasmo planetário.

Incidente do verão de 2018
Enquanto estava gravando neste último verão, eu tive uma assistente (mulher) trabalhando comigo para garantir, entre suas várias funções, que cada grama da minha energia estava eficientemente dedicada para a as necessidades da produção do programa. Como parte disso, ela também era minha motorista para e do estúdio, garantindo que eu chegasse na hora. No carro nós revisávamos detalhes da gravação e ela me ajudava a antecipar partes da filmagem que eu faria. Através de várias semanas de gravação ela e eu passamos mais de cem horas conversando só nós dois. Ficamos muito amigáveis ao ponto de falar sobre vários assuntos, até pessoais e sociais, como cuidar de pais idosos, relacionamentos com irmãos, vida no ensino médio e universidade, hobbies, raça, gênero e daí em diante. Nós também discutimos tópicos menos pessoais em abundância, como letras de músicas de rock, músicas favoritas em vários gêneros musicais, shows, etc. E também falávamos sobre comida – eu sou meio foodie, e o noivo dela era um chef. Resumindo, tínhamos uma amizade tagarela.
Ela é talentosa, afetuosa e amigável – características excelentes para a moral em uma produção com muita pressão. Praticamente todos que ela conhece ganham um abraço de boas-vindas dela. Eu rejeitei expressamente todos os abraços oferecidos frequentemente durante a produção. Mas no lugar ofereci um aperto de mão, e em algumas ocasiões, desajeitadamente declarei: “Se eu te abraçar eu posso querer mais”. Minha intenção era expressar minha negação, mas com afeto.
Na última semana de gravações, com alguns dias para terminar, como marca de nossa amizade, eu a convidei para vinho e queijo na minha casa quando ela me deixou em casa depois do trabalho. Sem pressão. Eu sirvo queijo e vinho para meus visitantes com frequência. E eu até cheguei a alertá-la de que os outros da produção estavam se reunindo em outro lugar naquela noite, então ela poderia me deixar e ir para lá ou para qualquer outro lugar. Ela decidiu entrar por livre-escolha para o vinho e queijos e eu fiquei encantado. No carro, nós estávamos tendo uma longa conversa que poderia continuar. Os dias de produção eram longos. Chegamos tarde, mas ela estava indo para casa duas horas depois.
Mais tarde, ela veio ao meu escritório e me disse que ela estava incomodada com a noite de queijos e vinho. Ela viu o convite como uma tentativa de seduzi-la, apesar dela ter sentado do outro lado da mesa de mim, e toda nossa conversa ter sido na mesma linha das outras que tivemos antes.
Além disso, eu nunca a toquei até o aperto de mão na saída. Naquela ocasião, eu oferecei um aperto de mão especial, um que eu aprendi de um idoso nativo em uma reserva na borda do Grand Canyon. Você estende seu dedão para frente durante o aperto, para sentir a energia vital da outra pessoa – o pulso. Eu nunca esqueci aquele aperto, e o reservo em sinal de apreciação para pessoas com quem eu criei novas amizades.
Naquele último encontro no meu escritório, eu me desculpei várias vezes. Ela aceitou o pedido de desculpas. E eu garanti a ela que se eu soubesse que ela estava desconfortável, eu teria me desculpado naquele momento, encerrado a noite e possivelmente a lembrado de que ela tinha outros eventos sociais para ir. Mesmo assim ela disse que aquele era seu último dia, mesmo com poucos dias para a produção terminar.
Eu destaco que o último gesto dela para mim foi a oferta de um abraço, que eu aceitei como uma despedida de uma amiga.

Início dos anos 1980
Eu entrei no mestrado de astrofísica diretamente depois da faculdade em 1980. É uma aventura difícil, que parece uma maratona, e muitas pessoas não terminam o doutorado. Na verdade, não é incomum que metade dos matriculados o abandonem depois de dois ou três anos, encontrando outros trabalhos. Enquanto no mestrado eu tive várias namoradas, uma delas que se tornaria minha esposa por trinta anos, uma física matemática – nós nos conhecemos na aula de Relatividade. Durante este período eu tive um curto relacionamento com uma aluna de astrofísica, de uma turma mais recente que a minha. Eu lembro de ter sido íntimo com ela algumas vezes, todas no apartamento dela, mas não havia química. Então o relacionamento logo acabou. Não tinha nada de estranho ou diferente nesta amizade.
u não a vi muitas vezes depois disso. Nossos escritórios eram em andares diferentes do prédio e não estávamos nas mesmas aulas. Alguns anos depois, eu a encontrei, grávida, junto com uma pessoa que eu acredito que fosse o pai. Foi aí que eu fiquei sabendo que ela desistiu do mestrado. Outra vez, isso não é um fato ímpar, mas eu desejei coisas boas para ela na maternidade e na nova carreira dela.
Mais de trinta anos depois, quando minha visibilidade sofreu um salto, eu li um post em um blog me acusando de tê-la drogado e estuprado. Eu não a reconhecia pela foto ou pelo nome. No final era a mesma pessoa que eu havia namorado brevemente no mestrado. Ela mudou seu nome e viveu uma vida inteira, casou e teve filhos, antes dessa acusação.
Eu vejo que essa alegação foi usada como um tipo de isca por pelo menos um jornalista para atrair qualquer pessoa que teve qualquer encontro comigo que a deixou desconfortável.

Resumo
Eu sou o acusado, então por que acreditar em qualquer coisa que eu digo? Por que acreditar em mim?

13.889 – Hubble Antes e Depois do Reparo


hubble fotos
O Telescópio Espacial Hubble fez diversos registros fantásticos do que está escondido no espaço sideral. Por algum tempo, porém, essas imagens foram feitas com uma qualidade embaçada, o que acabava prejudicando os cenários. Mas depois de uma manutenção a visão do dispositivo ficou praticamente perfeita. Para provar isso, a NASA divulgou imagens que comparam a foto de uma galáxia localizada a 55 milhões de anos-luz.
Em 1993, a NASA iniciou o processo de correção da visão embaçada do Hubble devido a uma falha de fabricação em seu espelho primário. Na época, foram selecionados vários objetos astronômicos que o telescópio deveria registrar. A magnífica galáxia espiral M100 parecia um alvo ideal para o campo de visão do Hubble, mesmo que “seus olhos” ainda estivessem com uma visão turva.
Após a missão de manutenção, o telescópio fotografou a galáxia novamente — dessa vez focalizada. Para comemorar o 25º aniversário da missão de manutenção, a NASA divulgou as duas imagens lado a lado para compará-las.
No final de novembro, a NASA revelou a primeira foto depois que o Hubble desde que entrou em modo de segurança no início de outubro. Trata-se de uma imagem que mostra um agrupamento de galáxias próximo da constelação de Pegasus. O clique foi feito pela Wide Field Camera 3 do telescópio no dia 27 de outubro.
O Hubble passou mais de vinte dias em modo de segurança após a NASA identificar uma falha no funcionamento de um dos giroscópios, equipamentos que ajudam o telescópio a se manter focado em determinadas partes do céu por longos períodos.

hobble fotos2

13.857 – Mega Techs – China apresenta sua futura estação espacial


estação espacial chinesa
Com um manequim usando traje de astronauta e adornada com bandeiras chinesas vermelhas e amarelas, a nave branca foi uma das grandes atrações da Feira Aeronáutica e Aeroespacial realizada em Zhuhai, no sul do país.
Deve se tornar a única no espaço após a retirada planejada da Estação Espacial Internacional (ISS).
A Estação Espacial Chinesa (CSS), também chamada de Tiangong (“Palácio Celestial”), terá três partes: um módulo principal com cerca de 17 metros de comprimento (local de vida e trabalho) apresentado nesta terça-feira e dois anexos (para experiências científicas).
Três astronautas poderão viver continuamente na estação, com um peso total de pelo menos 60 toneladas e equipada com painéis solares. Eles poderão realizar pesquisas em ciências, biologia e microgravidade.
A montagem da CSS deve começar por volta de 2022. Sua expectativa de vida é estimada em 10 anos.
A estação chinesa deve se tornar a única estação que voa no espaço após a retirada planejada em 2024 da ISS, que associa os Estados Unidos, Rússia, Europa, Japão e Canadá. Será, no entanto, muito menor.
“A China vai utilizar sua estação espacial da mesma maneira que os parceiros da ISS utilizam a sua atualmente: pesquisa, desenvolvimento de tecnologia e preparação das equipes chinesas para voos de longa duração”, explicou Chen Lan, analista para o GoTaikonauts.com, site especializado no programa espacial chinês.
A China anunciou, por outro lado, junto ao Escritório de Assuntos Espaciais da ONU, que sua estação estará aberta a todos os países para realizar experimentos científicos.
Institutos, universidades e empresas públicas e privadas foram convidadas a apresentar projetos. A China recebeu 40 propostas de 27 países e regiões, que agora devem passar por um processo de seleção, disse a televisão estatal CCTV em outubro.
“Ao longo do tempo, tenho certeza que a China colherá bons frutos”, prevê Bill Ostrove, especialista em questões espaciais na Forecast International, escritório de aconselhamento americano.
“Muitos países e um número crescente de empresas privadas e universidades têm programas espaciais, mas não o dinheiro para construir sua própria estação espacial. A possibilidade para eles (graças a China) de enviar cargas úteis para uma plataforma de voo habitada e realizar experimentos é algo extremamente precioso”, observa.
A Agência Espacial Europeia (ESA) já está enviando astronautas para treinar na China com o objetivo de viajar um dia para a estação chinesa.
Apesar da rivalidade entre Pequim e Washington, engajados numa guerra comercial, um astronauta americano poderia trabalhar a bordo da CSS.
“A agência espacial chinesa e a ONU poderiam planejar algo assim. Mas não é certo que o Congresso americano seja da mesma opinião”, apontou Chen.
Pequim investe milhões de dólares em seu programa espacial, coordenado pelo exército. Coloca os satélites em órbita, por conta própria (observação da Terra, telecomunicações, sistema de geolocalização Beidu) ou para outros países. Também espera enviar um robô a Marte e humanos à Lua.
O gigante asiático se tornará “uma das grandes potências do espaço”, mas a Rússia, o Japão e a Índia continuarão a desempenhar “um papel importante” e “os Estados Unidos continuam sendo o poder espacial dominante atual”, diz Bill Ostrove.
“As empresas privadas também estão se tornando cada vez mais importantes no mercado espacial, tornando difícil para um ou dois países dominar a indústria da mesma forma que os Estados Unidos fizeram durante a Guerra Fria”. aponta.
“Dominar o espaço nunca foi uma meta para a China”, disse Lan. “Mas as questões comerciais estão se tornando cada vez mais importantes no espaço, e ela percebe a inovação e a ciência como importantes impulsionadores econômicos”.

13.850 – Astrofísica – O Paradoxo de Olbers


Olber's_Paradox_-_All_Points
Em astrofísica, o paradoxo de Olbers (ou paradoxo da noite escura) argumenta que a escuridão do céu está em contradição com a hipótese de um universo infinito e estático. A escuridão do céu é uma das evidências da não estaticidade do universo, como no modelo do Big Bang do universo. Se o universo fosse estático e populado por uma quantidade infinita de estrelas, qualquer linha de visão partindo da terra coincidiria provavelmente com uma estrela suficientemente luminosa, de forma que o céu seria completamente brilhante. Isso contradiz a observação do céu predominantemente escuro.
O paradoxo foi descrito primeiramente pelo astrônomo alemão Heinrich Wilhelm Olbers em 1826 e anteriormente por Johannes Kepler em 1610 e Edmond Halley e Jean Philippe de Chéseaux no século XVIII. Face à simplicidade da pergunta acima, as respostas de Olbers e demais astrónomos vêm sempre acompanhadas com as mais inteligentes e elegantes explicações envolvendo múltiplas áreas das ciências exatas.
O paradoxo é a afirmação de que em um universo estático, infinito e com distribuição regular de estrelas em seu espaço, o céu noturno deveria ser brilhante.[1] O paradoxo possui o nome indevido já que num universo estático e infinito a distribuição de estrelas, mesmo sendo em número infinito, não precisa necessariamente ser regular. Aliás, a suposição de que a função de estrelas f(x) pela quantidade de volume de espaço x dividida por esse mesmo volume x tende a uma constante K quando x vai ao infinito é uma suposição muito forte.
Embora o Paradoxo de Olbers realmente constate que, se a distribuição de estrelas no céu fosse regular num universo infinito, a quantidade de energia estelar que atingiria a Terra seria infinita, não gera empecilhos para que haja um universo estático infinito com um número infinito de estrelas distribuídas de forma irregular (vide prova matemática abaixo). A presunção de que um universo infinito tenha obrigatoriamente um número infinito de estrelas também não pode ser provada – pois pode-se imaginar um universo infinito com o conjunto de matéria finita, mas dividida em infinitos corpos distintos – e abre-se em múltiplos exemplos e contradições.

Visibilidade das estrelas no céu noturno
Em qualquer caso, em um universo com infinitas estrelas, você veria uma distribuição homogênea delas pelo espaço. Isso não implica distribuição homogênea real, e sim apenas a disposição ótica delas.
Considere uma área A do céu que você vê, você tem como partida um volume x, cuja base é A, no qual pode estar uma estrela; como você procura no infinito, esse volume pode ser tão grande quanto for necessário para achá-la, de forma que mantenha a mesma forma e proporções do volume inicial. Resumindo, o volume no qual procura uma estrela pode tender ao infinito.
Seja g(x)/x a função da densidade estelar nesses volumes, onde x é o volume espacial e g(x), o volume estelar. Sabemos que quanto maior o volume espacial, menor será a sua densidade estelar. Se o volume que você olha é x, então g(x)/x vezes x = g(x) é a quantidade de estrelas que estará nele, e precisamos de apenas uma. Uma vez que g(x) tende ao infinito com x tendendo ao infinito, já que o universo tem infinitas estrelas, para qualquer área A do espaço em que você mirar a visão, ver-se-á obrigatoriamente uma estrela. Entenda como “ver” a captação de radiação dessa estrela, mesmo que seja tão fraca a ponto de você não percebê-la.
A visibilidade “homogênea” independe do comportamento da função g(x)/x, de forma que só importa g(x), que tende ao infinito quando x vai ao infinito, já que parte da premissa de que o universo é infinito e tem um número infinito de estrelas.
Apesar da precisão das respostas, quando a duvida é transferida para um habitante de um longínquo planeta, localizado no meio de um aglomerado globular, “Por que suas noites são claras? o questionamento toma outros sentidos.
Essa simples inversão, além de já nos trazer as mais sensatas e compreensíveis respostas, transforma o paradoxo anterior num fenômeno, associado a natureza humana, também rico em outras explicações mas de interesse de outras ciências e que não sejam tão exatas como as exatas, porem mais elucidativas, afinal num questionamento que envolve a utilização do conceito de limite e convergência o paradoxo surge ao introduzirem nos cálculos um um espaço de duas dimensões no lugar de três.

13.841 – Má Ideia – Rússia deseja lançar missão a Marte em 2019


trajetoria foguete
O programa espacial russo é ambicioso, já que a Lua também está no pacote. Os planos para explorar nosso satélite natural incluem um pouso para 2019, testes com tecnologias que podem ser usada em uma base permanente em 2023, retorno para a Terra com solo lunar em 2025 e estabelecimento da tão sonhada base por volta dos anos 2040 e 2050.
Esse plano parece muito mais promissor que a ideia de ir para Marte. Isso porque não é tão simples sair voando e chegar no Planeta Vermelho. Além de toda tecnologia, é preciso esperar a hora certa. Um momento em que as órbitas dos dois planetas se coincidam, com apenas 56 milhões de quilômetros separando Marte e a Terra.
O momento, conhecido como janela de lançamento, ocorre a cada 26 meses. A próxima começa em maio e se encerra em junho deste ano. A NASA pretende, inclusive, aproveitar para lançar a missão Insight Lander no dia cinco de maio, viajando por sete meses até chegar ao nosso vizinho, no dia 25 de novembro.
Depois disso, somente na metade de 2020. Ou seja, se a Rússia realmente quiser mandar uma missão para marte, seu foguete teria que pegar um caminho mais longo, dando uma volta pelo Sol e percorrer uma distância de 401 milhões de quilômetros. Alguém manda um recado para o Putin: é melhor esperar uns meses a mais.

13.839 – Arquimedes


arquimedes_766527517-400x600
Nasceu em Siracusa, atual Itália, no ano 287 a.C. Foi um matemático, engenheiro, físico, inventor e astrônomo grego, filho de um astrônomo, que provavelmente o apresentou à matemática. Arquimedes estudou em Alexandria, onde teve como mestre Canon de Samos e, assim, entrou em contato com Erastótenes. A este último Arquimedes dedicou seu método, no qual expôs sua genial aplicação da mecânica à geometria, desta maneira, “pesava” imaginariamente áreas e volumes desconhecidos para determinar seu valor. Voltou logo a Siracusa, onde se dedicou totalmente ao trabalho científico.
Da biografia de Arquimedes, o maior matemático da antiguidade, a quem Plutarco creditou uma inteligência bem acima do normal, somente é conhecida uma série de anedotas. A mais divulgada é aquela relatada por Vitrúvio e se refere ao método que utilizou para comprovar se existiu fraude na confecção de uma coroa de ouro pedida por Hierão II, tirano de Siracusa e protetor de Arquimedes, quem sabe, até seu parente. Ao tomar banho, Arquimedes percebeu que a água transbordava da banheira, na medida em que mergulhava nela. Esta observação lhe permitiu resolver a questão que lhe havia sido proposta pelo tirano. Conta-se que ao descobrir como detectar se a coroa era ou não de ouro, tomado de tanta alegria, partiu correndo nu pelas ruas de Siracusa em direção à casa de Hierão gritando “Eureka!, Eureka!”, ou seja, descobri!, descobri!
Segundo outra anedota famosa, contada por Plutarco, Arquimedes assegurou ao tirano que, se lhe dessem um ponto de apoio, conseguiria mover a terra. Acredita-se que, incentivado pelo rei a pôr em prática o que dizia, Arquimedes, com um complexo sistema de roldanas, pôs em movimento, sem esforço, um grande navio com três mastros e totalmente carregado.
São famosas as diversas invenções bélicas de Arquimedes que, segundo se acredita, ajudaram Siracusa a resistir, durante três anos, ao assédio romano, antes de cair nas mãos das tropas de Marcelo.
Dentre seus mais famosos livros podemos citar: Equilíbrios Planos, onde fundamentou a lei da alavanca, deduzindo-a por meio de poucos postulados, determinou o centro de gravidade de paralelogramos, trapézios, retângulos e de um segmento de parábola; Sobre a Esfera e o Cilindro, aqui Arquimedes utilizou um método conhecido como exaustão, precedente do cálculo integral, para determinar a superfície de uma esfera e para estabelecer a relação entre uma esfera e o cilindro circunscrito nela.
Arquimedes foi morto (212 a.C.) por um soldado romano ao recusar-se a abandonar um problema matemático no qual estava imerso.

13.837 – História da Astronomia – Abu Abdallah Mohammed ibn Musa Al-Khwarizmi


Al-Khwarizmi astronomo
(Khwarizm, Uzbequistão ? 780 – Bagdá ? 850) foi um matemático, astrônomo, geógrafo e historiador. É de seu nome que deriva o termo “algarismo”, em português.
São poucos detalhes conhecidos de sua vida. É certo, porém, que se aprofundou no estudo de várias ciências, como aritmética, álgebra, astronomia, geografia e sobre o calendário, tendo escrito tratados em todos estes campos do conhecimento. Alguns de seus trabalhos foram traduzidos para o latim e estudadas pelas mentes mais avançadas da Europa na época, contribuindo para que o continente se libertasse do domínio intelectual da igreja, preparando as bases do humanismo renascentista. Seus tratados são até hoje reconhecidos, valorizados e ainda empregados. Por isso mesmo, ele é considerado uma das maiores mentes científicas do período medieval e mais importante matemático muçulmano, ganhando merecidamente o título de “pai da álgebra”.
Nesse campo destaca-se seu “Al-Kitab al-fi mukhtaṣar Hisab al-jabr wa-l-muqabala” (Compêndio sobre Cálculo por Completude e Balanço) que se tornou um dos principais livros de matemática das universidades europeias. Considerado o primeiro tratado dedicado à álgebra (apesar de ter notoriamente se baseado em antigas fontes indianas e gregas), é um de seus trabalhos mais célebres, e foi seu título que nos legou o termo “álgebra” (al-jabr)​​.
A sua obra Kitāb al-Jamʿ wa-l-tafrīq bi-ḥisāb al-Hind (O Livro de adição e subtração de acordo com o cálculo hindu) é por sua vez um clássico da aritmética, responsável por apresentar os números arábicos (na verdade, indianos), incluindo o zero aos europeus. O texto original árabe se perdeu, restando apenas uma tradução contemporânea em latim. Neste trabalho, Al-Khwarizmi lida com as quatro operações básicas de adição, subtração, multiplicação e divisão, bem como com as frações comuns e sexagesimal e da extração da raiz quadrada.
Al-Khwarizmi e seu colegas, os irmãos Banu Musa pertenceram à Casa da Sabedoria (Bayt Ul-Hikma), uma biblioteca e instituto de tradução estabelecido no período do domínio Abássida em Bagdá, Iraque, à época do reinado do califa al-Mamum (813-833), patrono do conhecimento e do aprendizado. Entre suas tarefas estavam a tradução de manuscritos científicos em grego, sânscrito, pahlavi (persa médio) e de outras línguas para o árabe, além de dedicar-se a pesquisas nas áreas da álgebra, geometria e astronomia. Certamente al-Khwarizmi trabalhou sob o patrocínio do califa Al-Mamun e a ele dedicou dois de seus textos, seu tratado sobre álgebra e seu tratado sobre astronomia. É possível que tenha escrito um tratado sobre o astrolábio e outro sobre relógios de sol, mas estes dois últimos não chegaram aos nossos dias.

13.836 – Astronomia – A comunicação entre a Terra e robôs em Marte


Robô Curiosity
Robô Curiosity

Em 2012 a Agência Espacial Americana, a NASA, enviou ao planeta Marte uma sonda robotizada com a missão de explorar o desconhecido astro, analisando as suas formações rochosas, solo, atmosfera e tudo mais, a procura da existência ou não de vidas passadas (muito provavelmente seres vivos microbianos) e estudar a formação do planeta afim de saber se o seu ambiente alguma vez na história já possa ter sido conveniente para a formação da vida como nós a conhecemos hoje.
Essa sonda recebeu o nome de Curiosity e é o primeiro laboratório móvel completo enviado a outro a planeta; terá por função estudar o solo marciano por cerca de dois anos. Essa sonda está equipada com um braço mecânico capaz de fazer furos, câmeras, sensores térmicos e de movimentos, etc, mas um de seus componentes mais importantes são as antenas, que são usadas para a transmissão de dados para a Terra. Existem três diferentes antenas acopladas à sonda: uma de baixo ganho, uma de alto ganho e uma antena do tipo UHF (Ultra High Frequency; Frequência Ultra Alta).
A primeira antena está ligada a um rádio lento, de baixa potência UHF. Ele é capaz de transmitir uma pequena taxa de dados para outras sondas orbitantes em Marte ou também diretamente para a Terra. Foi projetado para ser usado em situações de emergência, quando os demais dispositivos de transmissão falharem.
A segunda antena está ligada a um rádio UHF de alta velocidade. Este por sua vez transmite as informações rapidamente para as sondas orbitantes do planeta (Odyssey, Mars Reconnaissance Orbiter e Mars Express), a taxas entre 256 kbits/s a 2 Mbits/s e possui um consumo de apenas 15 watts. É o principal meio de comunicação, estima-se que cerca de 31 megabytes de dados cheguem à Terra por dia através deste canal.
Por fim, a antena de alto ganho. Ela conecta diretamente a sonda Curiosity com os cientistas e engenheiros aqui na Terra e por tal motivo este canal só se encontra disponível durante três horas do dia, devido ao alinhamento dos planetas e questões de energia. Esta antena usa um rádio que consome 40 watts e transmite apenas 12 kilobits por segundo. Existe um atraso de 20 minutos na transmissão das informações, pois o sinal precisa percorrer a distâncias superiores entre 100 a 400 milhões de quilômetros entre a Terra e Marte. Por ser um canal de comunicação direto, a NASA o utiliza para enviar comandos a sonda e também para receber dados críticos.
Na Terra, os sinais são captados por antenas de até 70 metros de diâmetro, que fazem parte da Deep Space Network (utilizada também para comunicação com todos os outros satélites e outras missões espaciais).

13.802 – SpaceX vai levar um passageiro em viagem ao redor da Lua


spacex-turismo-lua-700x420
Viajar a passeio até a Lua ainda é um sonho impossível, mas um privilegiado vai poder chegar perto dela: a SpaceX, do bilionário (e agora polêmico) Elon Musk, revelou que irá transportar o seu primeiro turista espacial ao redor da Lua. O valor da “passagem” não foi informado.
Pelo Twitter, a companhia afirma ter fechado o primeiro contrato do mundo para levar um passageiro a uma volta ao redor da Lua. O nome da pessoa foi não anunciado, mas a SpaceX promete dizer quem é o felizardo (ou felizarda) na próxima segunda-feira (17-09-2018). Quando perguntado sobre isso na rede social, Musk respondeu com uma bandeira do Japão. É uma pista.
Em fevereiro do ano passado, a Space relatou planos de fazer a primeira viagem de turismo espacial com dois passageiros até o fim de 2018, mas utilizando o foguete Falcon Heavy e a nave Dragon. Porém, neste ano, Musk revelou que não pretendia empregar a Falcon Heavy em missões tripuladas.
Em vez da Falcon, a SpaceX deve usar o foguete Big Falcon Rocket (BFR) e a nave Big Falcon Spaceship (BFS). Quando a viagem acontecerá? Eis outro mistério: talvez essa informação seja revelada na segunda-feira, mas, muito provavelmente, não será em um prazo curto, pois a missão depende, entre outros fatores, do nível de desenvolvimento do BFR e da BFS.
Projetado para ser reutilizável, o BFR foi anunciado oficialmente em setembro de 2017. Com custo de desenvolvimento estimado em US$ 10 bilhões, sabe-se que o foguete transportará até 150 toneladas e poderá substituir os veículos Falcon 9 e Falcon Heavy. Mas não está claro quando o equipamento estará efetivamente pronto.
A BFS também está em desenvolvimento e, por ter um projeto mais complexo do que a Dragon, não vai ficar pronta tão cedo. A SpaceX espera que os testes iniciais com a nave comecem até o fim de 2019, porém.
Por conta desses fatores, há quem aposte que o misterioso turista espacial só irá realizar a sua viagem a partir de 2024. É verdade que Musk chegou a dizer que o BFR fará o seu primeiro voo (para Marte) em 2022, o que poderia antecipar a viagem turística para o mesmo ano ou para 2023, mas as previsões dele costumam ser demasiadamente otimistas.

13.752 – FRB 180725A: cientistas detectam sinal misterioso e poderoso de rádio sem origem conhecida


Nosso universo está repleto de luz invisível. Além do espectro visível, diversos sinais de rádio e micro-ondas inundam o espaço provenientes das mais diversas fontes, como estrelas em colapso, campos magnéticos, nuvens de poeira espacial e buracos negros famintos.
Mas um desses sinais de luz – chamado de “rajadas rápidas de rádio”, ou “explosões rápidas de rádio” (do termo original em inglês “fast radio bursts” ou FRB) – tem intrigado enormemente os cientistas porque não conseguimos determinar sua origem.
As FRBs são muito poderosas e duram apenas alguns milissegundos. Na manhã de 25 de julho, uma dessas explosões de energia passou zunindo por uma nova série de radiotelescópios localizada nas montanhas da Colúmbia Britânica, no Canadá, registrando um dos mais raros desses eventos já detectados.
O sinal misterioso, denominado FRB 180725A, foi transmitido em frequências de até 580 megahertz, quase 200 MHz abaixo de qualquer outro FRB detectado.

O que sabemos sobre FRBs
Segundo Patrick Boyle, autor do The Astronomer’s Telegram (um boletim de observações astronômicas postadas por cientistas credenciados) e gerente do projeto CHIME, o radiotelescópio que detectou o novo sinal, FRBs ocorrem tanto durante o dia quanto a noite, e seus horários não estão correlacionados com atividades conhecidas no local de origem, nem com outras fontes notórias de tal energia.
A frequência rápida e baixa dos sinais sugerem que as explosões são extremamente brilhantes e originam-se de uma fonte insanamente poderosa em algum lugar do cosmos.
Procedências possíveis incluem supernovas, buracos negros supermassivos e algumas outras fontes de radiação eletromagnética poderosa, como os pulsares, mas, até agora, não identificamos uma fonte natural para os FRBs com confiança.
Logo, os cientistas não descartam uma “origem artificial” dos sinais – isto é, inteligência extraterrestre.
O CHIME é um radiotelescópio de última geração projetado para detectar ondas de rádio antigas enviadas quando o universo era apenas uma criança, entre 6 e 11 bilhões de anos atrás. Embora esteja em operação há apenas cerca de um ano, ele já detectou vários FRBs notáveis, incluindo diversos sinais de baixa frequência que se seguiram logo após o poderoso FRB 180725A na semana passada.
Quem sabe mais tecnologias como o CHIME ajudem os cientistas a finalmente desvendarem tais rajadas rápidas de rádio e sua origem elusiva. [LiveScience]

13.751 – Eta Carinae: os segredos da maior explosão estelar que não resultou em uma supernova


eta-carinae
Imagine viajar para a lua em apenas 20 segundos. É nessa velocidade que o material de uma erupção se afastou do instável e extremamente massivo sistema estelar Eta Carinae, 170 anos atrás.
Quando gás é lançado tão rápido assim, resulta na completa aniquilação da estrela. Eta Carinae sobreviveu, no entanto, o que torna esse o gás mais rápido já medido a partir de uma explosão estelar que não levou a uma supernova na história.
Eta Carinae é a estrela mais luminosa conhecida em nossa galáxia. A explosão liberou quase tanta energia quanto uma supernova típica, que teria deixado para trás um cadáver estelar.
Nos últimos sete anos, uma equipe de astrônomos liderada por Nathan Smith, da Universidade do Arizona, e Armin Rest, do Instituto de Ciência do Telescópio Espacial, nos EUA, têm determinado a extensão dessa explosão, observando ecos de luz de Eta Carinae e seus arredores.
Os ecos ocorrem quando a luz de eventos brilhantes e de curta duração é refletida por nuvens de poeira, que atuam como espelhos distantes redirecionando-a em nossa direção. Como um eco de áudio, o sinal de chegada da luz refletida tem um atraso após o evento original, devido à velocidade finita da luz.
No caso de Eta Carinae, o evento brilhante foi uma grande erupção que expeliu uma enorme quantidade de massa em meados do século XIX. O sinal tardio desses ecos permitiu que os astrônomos decodificassem a luz da erupção com telescópios e instrumentos astronômicos modernos, embora o episódio original tenha sido visto da Terra centenas de anos atrás.
A grande erupção promoveu temporariamente Eta Carinae para a segunda estrela mais brilhante visível em nosso céu noturno, superando a luz de todas as outras estrelas da Via Láctea. Material equivalente a cerca de dez vezes mais do que a massa do sol foi expelido, o que também formou a intensa nuvem de gás conhecida como Homunculus em torno da estrela.
Este remanescente é visível até por pequenos telescópios amadores a partir do hemisfério sul e das regiões equatoriais, mas é melhor observado em imagens obtidas com o Telescópio Espacial Hubble.
Para decodificar os ecos de luz da erupção em si, a equipe usou instrumentos do Observatório Gemini (Havaí), do Telescópio Blanco do Observatório Interamericano Cerro Tololo (Chile), e do Telescópio Magellan do Observatório Las Campanas (Chile).
Com os dados, os pesquisadores puderam fixar a velocidade da explosão: entre 10.000 e 20.000 quilômetros por segundo. “Nós vemos essas velocidades realmente altas o tempo todo em explosões de supernovas onde a estrela é obliterada. No entanto, neste caso, a estrela sobreviveu. Algo deve ter despejado muita energia nela em um curto espaço de tempo”, explicou Smith.
O material expulso por Eta Carinae está viajando até 20 vezes mais rápido do que o esperado de erupções típicas de uma estrela massiva. Os cientistas acreditam que a ajuda de duas estrelas parceiras pode explicar o fluxo extremo.
A maneira mais direta de explicar simultaneamente a ampla gama de fatos observados em torno da erupção e do sistema remanescente é uma interação de três estrelas, incluindo um evento dramático em que duas delas se fundiram em uma estrela monstro.
Compreender a dinâmica e o ambiente em torno das maiores estrelas da nossa galáxia é uma das áreas mais difíceis da astronomia. Estrelas muito massivas têm vidas curtas comparadas a estrelas como o nosso sol. Capturar uma no ato de uma grande etapa evolutiva é estatisticamente improvável. É por isso que um caso como o de Eta Carinae é tão importante.
Eta Carinae é um tipo de estrela instável conhecida como “variável luminosa azul”, localizada a cerca de 7.500 anos-luz. É uma das mais brilhantes da nossa galáxia, cerca de cinco milhões de vezes mais do que o sol, com uma massa cerca de cem vezes maior. Também tem a maior taxa conhecida de perda de massa antes de passar por uma explosão de supernova.
A quantidade de massa expelida na grande erupção de Eta Carinae no século XIX excede todas as outras conhecidas. Ela provavelmente sofrerá uma verdadeira explosão de supernova nos próximos meio milhão de anos, possivelmente muito mais cedo. Isso porque outras supernovas observadas passaram por erupções semelhantes apenas alguns anos ou décadas antes de sua morte.
Os resultados do estudo foram publicados em dois artigos na revista científica Monthly Notices of the Royal Astronomical Society. [ScienceDaily]