13.649 – Estação espacial chinesa em queda é avistada por telescópio


porcentagens-risco
Prestes a completar seu voo desgovernado em direção a Terra, a estação espacial chinesa Tiangong-1 foi avistada por astrônomos italianos e norte-americanos. Um telescópio controlado de maneira robótica conseguiu rastrear o módulo espacial e fornecer imagens durante uma transmissão realizada por pesquisadores do The Virtual Telescope Project, na Itália, e do Observatório Tenagra, nos Estados Unidos.
Identificar a estação espacial não foi tarefa fácil: o Tiangong-1 realiza uma trajetória sem rumo a cerca de 200 quilômetros de altura da Terra, com velocidade de quase 28 mil quilômetros por hora.
De acordo com a Agência Espacial Europeia (ESA), a reentrada na atmosfera deve ocorrer entre os dias 30 de março e 2 de abril: lançada em 2011, a Tiangong-1 está desabitada desde 2013 e desgovernada desde 2016.
Cálculos realizados por especialistas afirmam que o Brasil é um dos países que poderiam ser atingidos por fragmentos da estação espacial após sua reentrada na atmosfera. A possibilidade disso acontecer é de cerca de 2,28%. Uma chance bastante remota, mas não nula.
Por ter cerca de 10 metros de comprimento, 3 metros de largura e 8,5 toneladas no lançamento (devido ao gasto de combustível, o peso atual é menor), destroços podem chegar intactos à superfície. As chances de acertarem uma pessoa, no entanto, são ínfimas: 0,02%.
E a possibilidade de um pedaço da Tiangong-1 atingir você é muito mais remoto do que acertar as seis dezenas da Mega-Sena com apenas um jogo: em números, há 0,0000000000027% de chance da estação espacial espatifar sobre sua cabeça contra 0,000002% de probabilidade de tornar-se milionário na loteria. Conte os zeros e faça suas apostas.

Anúncios

13.636 – A um passo de Marte: Nasa faz primeiro teste de poderoso foguete


Nasa realizou nesta quarta-feira um primeiro teste em solo de um foguete auxiliar destinado a equipar o futuro veículo de lançamento de carga pesada da agência espacial norte-americana, o “Space Launch System” (SLS), que será utilizado para cumprir a meta de viajar até Marte.
“Teste fantástico, resultado fantástico”, comemorou Alex Priskos, um dos encarregados do sistema de propulsão dos ônibus espaciais da Nasa.
Preso horizontalmente ao solo na base de uma montanha em Utah, o foguete auxiliar de 54 metros de comprimento funcionou como previsto, após ser aquecido durante dois minutos para testar o desempenho do sistema quando for eventualmente lançado.
Mais de 500 sensores registraram os dados emitidos, que serão analisados nos próximos meses.
O arranque do motor do foguete foi feito a uma temperatura ambiente elevada para simular um lançamento no verão, quando a atmosfera supera os 35° C.
Outro teste está previsto para o início de 2016, com temperaturas muito frias, no intuito de simular um lançamento no inverno.
O futuro veículo de lançamento de carga pesada da Nasa será equipado por estes dois foguetes de reforço para a decolagem, que são versões modernizadas e mais potentes que as usadas para o ônibus espacial.
Eles permitirão dispor de 75% da força propulsora do SLS durante os dois primeiros minutos do lançamento. O restante será garantido pelos quatro motores criogênicos RS-25 do lançador, que provêm também do ônibus.
O último ônibus espacial voou em julho de 2011.
O SLS realizará seu primeiro voo de testes em 2018 e lançará na ocasião a cápsula Orion. No futuro, esta cápsula transportará dois astronautas norte-americanos para as missões ao redor da Lua, de um asteroide e, no longo prazo, até Marte, possivelmente em 2030.
A cápsula Orion realizou seu primeiro voo-teste sem astronautas em dezembro de 2014, quando deu voltas ao redor da Terra para testar seu escudo térmico ao voltar para a atmosfera.

13.635 – Astronomia – Satélites do Sistema Solar


satelites
Os planetas e os planetas anões oficiais do Sistema Solar são conhecidos por serem orbitados por 182 satélites naturais ou luas. 19 satélites do Sistema Solar são grandes o suficiente para serem gravitacionalmente arredondados, e, portanto, seriam considerados planetas ou planetas anões se estivessem em órbita direta ao redor do Sol.
Um satélite natural é um corpo celeste que orbita ao redor de um corpo celeste de maiores dimensões. É o caso, por exemplo, da Lua que é o satélite natural do planeta Terra. O nosso Sistema Solar possui 8 planetas, e ao redor dos planetas orbitam ao todo mais de 170 satélites naturais (ou luas) atualmente conhecidos. Dos 8 planetas do nosso Sistema Solar, apenas os planetas Mercúrio e Vénus não têm quaisquer satélites naturais conhecidos.
Os satélites naturais dos planetas do Sistema Solar possuem dimensões muito diferentes. Alguns têm vários milhares de km de diâmetro, outros têm diâmetros na ordem de 1 km.

Ganimedes – O maior satélite de todos os planetas do Sistema Solar. Trata-se, por isso, também do maior satélite do planeta Júpiter, possuindo 5.262 km de diâmetro. Ganimedes foi descoberto em 1610, pelo astrónomo italiano Galileu Galilei.

Titã – O segundo maior satélite do Sistema Solar, sendo o maior satélite do planeta Saturno, possuindo 5.150 km de diâmetro. Este é o único satélite do Sistema Solar que sabemos possuir uma atmosfera densa. Titã foi descoberto em 1655 pelo astrónomo holandês Christiaan Huygens.

Calisto – Este satélite do planeta Júpiter aparece em terceiro lugar, com 4.820 km de diâmetro. Calisto foi descoberto no ano de 1610 por Galileu Galilei.

Io – Em quarto lugar surge outro satélite de Júpiter. Io possui 3.642 km de diâmetro. Esta lua de Júpiter é caracterizada pela sua intensa atividade vulcânica, sendo mesmo o objeto com maior atividade vulcânica de todo o Sistema Solar. Io foi descoberto em 1610 por Galileu Galilei.

Lua – O satélite do planeta Terra aparece em quinto lugar. A nossa Lua possui 3.475 km de diâmetro. O diâmetro da Lua é cerca de 1/4 do diâmetro da Terra, o que faz com que a Lua seja o maior satélite do Sistema Solar em termos de proporção com seu planeta, porém é o quinto em termos absolutos.

Europa – Em lugar sexto surge outra lua do planeta Júpiter. Europa possui 3.121 km de diâmetro. Debaixo de sua crosta de gelo, é possível que exista um oceano de água salgada. Europa foi descoberto em 1610 por Galileu Galilei.

Tritão – Em sétimo lugar está Tritão, sendo este o maior satélite do planeta Neptuno com 2.706 km de diâmetro. Dada a sua grande distância ao Sol, Tritão é um dos objetos mais frios do Sistema Solar com temperaturas a rondar os -235º C. Tritão foi descoberto em 1846 pelo astrónomo inglês William Lassell.

Titânia – Em oitavo lugar aparece o maior satélite do planeta Úrano. Titânia possui 1.577 km de diâmetro. Titânia foi descoberto em 1787 pelo astrónomo William Herschel (o astrónomo que descobriu o planeta Úrano).

Reia – A nona maior lua do Sistema Solar é Reia, que é também a segunda maior do planeta Saturno, possuindo 1.528 km de diâmetro. Reia foi descoberta pelo astrónomo italiano Giovanni Cassini em 1672.

Oberon – Em décimo lugar surge Oberon, satélite do planeta Úrano. O diâmetro de Oberon é de 1.523 km. Oberon foi descoberto em 1787 pelo astrónomo William Herschel.

13.584 – Coincidência? – Asteroide em forma de caveira volta a passar perto da Terra em 2018


asteroide haloween
O corpo celeste 2015 TB145, conhecido como ‘Asteroide do Halloween’, deve passar perto da Terra em 2015. Ele ganhou o apelido por mostrar semelhança com crânio humano ao girar em torno de seu próprio eixo. Além disso, ele foi visto pela última vez em outubro de 2015, próximo à data em que é o Dia das Bruxas é comemorado em alguns países.
Em sua última passagem , o asteroide estava a uma distância de aproximadamente 486 mil km da Terra, cerca de 1,3 vezes a distância da Lua à Terra. Segundo o pesquisador Pablo Santos-Sanz, dos Instituto de Astrofísica da Andaluzia (IAA-CSIC), o asteroide poderá ser observado de novo em novembro de 2018.
No entanto, no próximo ano, o 2015 TB145 estará a uma distância 105 vezes maior que a da Terra à Lua.
O Asteroide do Halloween tem entre 625 a 700 metros de diâmetro, de acordo com o estudo publicado pelo cientista Pablo Santos-Sanz e sua equipe no periódico Astronomy and Astrophysics.
O pesquisador espera que a aproximação permita mais descobertas sobre o corpo celeste.”Apesar de essa passagem próxima não ser tão favorável, conseguiremos como obter novos dados que podem aumentar nosso conhecimento sobre a massa dele e outras que passam pelo planeta”, disse Pablo Santos-Cruz à BBC.

13.568 – Exobiologia – Estas estranhas bactérias podem ser a chave para a encontrarmos


bacterias-comem-ar-antartica
Formas de vida

Os micróbios foram encontrados na Antártica e podem subsistir de uma dieta de hidrogênio, monóxido de carbono e dióxido de carbono, mantendo-se vivos nas condições mais extremas em que outros alimentos e fontes de energia são escassos.
A possibilidade de formas de vida de baixo nível existirem em outros planetas também é uma que agora podemos considerar.
“A grande questão é como os micróbios podem sobreviver quando há pouca água, os solos são muito baixos em carbono orgânico e há pouca capacidade para produzir energia do sol através da fotossíntese durante a escuridão do inverno”, disse a principal pesquisadora Belinda Ferrari.

Vida que vive do quê?
A Antártica é um local com condições particularmente desfavoráveis à vida: temperaturas extremas, pouca água, meses de escuridão, radiação ultravioleta forte e intempérie de ciclos de congelamento e descongelamento.
E, no entanto, a vida está presente lá. Como sobrevive sem as fontes de energia usuais, como carbono que se transforma em açúcar através da fotossíntese?
Para responder a essa pergunta, os pesquisadores coletaram amostras de solo de duas partes livres de gelo do continente, Robinson Ridge e Adams Flat, escolhidas porque qualquer fonte de alimento reconhecível para a vida ou para bactérias é praticamente inexistente por lá.
Ao reconstruir os genomas de 23 micróbios, os cientistas conseguiram identificar dois grupos de bactérias anteriormente desconhecidos que eles chamaram de WPS-2 e AD3.
Além disso, as espécies dominantes no solo tinham genes com alta afinidade com o hidrogênio e o monóxido de carbono, permitindo que capturassem estes gases do ar a uma velocidade suficientemente rápida para sustentar a vida.

Vida alienígena
Essa é a primeira forma de vida que “come ar” que já identificados, mesmo que seja apenas uma bactéria na maior parte dormente.
O próximo passo é descobrir quão generalizados são estes tipos de bactérias de baixa manutenção, seja na Antártica ou em qualquer outro lugar da Terra.
Eventualmente, micróbios semelhantes podem ser encontrados em outros planetas, ou seja, formas de vida sem necessidade de outros alimentos exceto o ar que respiram.
“Esta nova compreensão sobre como a vida ainda pode existir em ambientes fisicamente extremos e desprovidos de nutrientes como a Antártica abre a possibilidade para gases atmosféricos que sustentam a vida em outros planetas”, explica Ferrari. [ScienceAlert]

13.550 – Astrofísica – Pressão Atmosférica em de Júpiter


jupiter glif
É a maior atmosfera planetária do Sistema Solar. É composta principalmente de hidrogênio molecular e hélio em proporções similares às do Sol. Outros elementos e compostos químicos estão presentes em pequenas quantidades e incluem metano, amônia, sulfeto de hidrogênio e água. Embora acredite-se que a água esteja presente nas profundezas da atmosfera, sua concentração é muito baixa. A atmosfera joviana também possui oxigênio, nitrogênio, enxofre e gases nobres. A abundância destes elementos excede três vezes a do Sol.
De baixo para cima, as camadas atmosféricas são troposfera, estratosfera, termosfera, e exosfera. Cada camada possui seu gradiente de temperatura característicos.
A camada mais baixa, a troposfera, possui um sistema complicado de nuvens, com camadas de amônia, hidrosulfeto de amônia, e água. As nuvens superiores de amônia são visíveis da superfície do planeta, e estão organizadas em um sistema de bandas paralelas ao equador, sendo limitadas por fortes correntes atmosféricas (ventos) conhecidas como jatos. As bandas alternam-se em cor: as bandas de cor mais escuras são chamadas de cinturões, enquanto as bandas de cor mais clara, de zonas. Zonas, que são mais frias que cinturões, correspondem às regiões nas quais o ar está movendo para cima, enquanto nos cinturões o ar está movendo em direção ao interior do planeta. Acredita-se que a cor das zonas seja o resultado de gelo de amônia; não se sabe ainda com certeza o mecanismo que dão aos cinturões suas cores típicas.
A atmosfera jupiteriana possui vários tipos de fenômenos ativos, incluindo instabilidades das bandas, vórtices (ciclones e anticiclones), tempestades e raios.
A circulação atmosférica em Júpiter é significantemente diferente da circulação atmosférica terrestre. O interior de Júpiter é fluido, e não possui nenhuma superfície sólida. Portanto, convecção pode ocorrer na camada de hidrogênio molecular do planeta. Nenhuma teoria compreensiva sobre a dinâmica da atmosfera jupiteriana foi desenvolvida até o presente. Uma teoria bem sucedida deste tipo precisa responder às seguintes questões: a existência de bandas e jatos estáveis estreitos e relativamente simétricos em relação ao equador jupiteriano; o forte jato prógrado observado no equador; a diferença entre cinturões e zonas; e a origem e a persistência de grandes vórtices tais como a Grande Mancha Vermelha.
Júpiter radia mais calor do que recebe do Sol, fato conhecido desde 1966. Estima-se que a razão entre o poder emitido pelo planeta e o poder absorvido do Sol é de 1,67 ± 0,09. O fluxo de calor interno de Júpiter é de 5,44 ± 0,43 W/m², enquanto o poder total emitido pelo planeta é de 335 ± 26 petawatts. O último valor é aproximadamente iqual a um bilionésimo do valor do poder total radiado pelo Sol. Este excesso de calor é primariamente calor primordial proveniente da formação do planeta, mas pode resultar também da precipitação de hélio no interior do planeta.
Os primeiros astrônomos, utilizando pequenos telescópios com olhos como detectores, registraram as mudanças de aparência da atmosfera de Júpiter. Os termos utilizados para descrever as características da atmosfera jupiteriana — cinturões, zonas, manchas vermelhas e marrons, plumas, jatos — ainda são utilizados. Outros termos, tais como vorticidade, movimento vertical, altura das nuvens, entraram em uso depois, no século XX.
As primeiras observações da atmosfera jupiteriana em resoluções maiores do que as possíveis com telescópios terrestres foram tomadas pelas sondas Pioneer 10 e Pioneer 11, embora as primeiras imagens em detalhes da atmosfera jupiteriana foram tomadas pelas sondas Voyager 1 e Voyager 2. As Voyagers tomaram imagens com resolução de até 5 km, em vários espectros, e também criaram filmes de aproximação, mostrando a circulação atmosférica jupiteriana. A sonda Galileu observou menos a atmosfera jupiteriana, embora suas imagens tenham tido, em média, uma resolução maior, e um espectro mais diversificado do que as imagens tomadas pelas Voyagers.
Atualmente, astrônomos possuem acesso contínuo à atividade atmosférica de Júpiter graças a telescópios tais como o Hubble.
Júpiter é composto principalmente de hidrogênio, sendo um quarto de sua massa composta de hélio, embora o hélio corresponda a apenas um décimo do número total de moléculas. O planeta também pode possuir um núcleo rochoso composto por elementos mais pesados, embora, como os outros planetas gigantes, não possua uma superfície sólida bem definida.
Júpiter é observável da Terra a olho nu, com uma magnitude aparente máxima de -2,94, sendo no geral o quarto objeto mais brilhante no céu, depois do Sol, da Lua e de Vênus.
Júpiter possui a maior atmosfera planetária do Sistema Solar, com mais de 5 000 km de altitude.
Como o planeta não tem superfície, a base de sua atmosfera é considerada o ponto em que sua pressão atmosférica é igual a 100 kPa (1.0 bar).
Júpiter é o planeta de maior massa (318 vezes a massa da Terra, mais que todos os outros planetas juntos) e maior raio (cerca de 71500 km, 11 vezes o raio terrestre). Na verdade, Júpiter é tão grande que se pensa poder ser uma estrela abortada – não tem ainda a massa suficiente para que as forças gravitacionais pudessem começar a fusão nuclear. Outro elemento em favor desta teoria é a composição da atmosfera joviana: 90% de hidrogénio, 10% de hélio e vestígios de metano, dióxido de carbono, água, amónia e silicatos – não muito diferente da Nebulosa Solar primordial. Assim, se Júpiter fosse maior (cerca de 80 vezes maior), o nosso Sistema Solar teria uma estrela dupla Sol-Júpiter.

A massa de Júpiter é suficientemente grande, contudo, para ter efeitos sobre todo o Sistema Solar. Na Terra, por exemplo, uma análise matemática das marés mostra que, para além do efeito dominante, bem conhecido, da Lua, há um segundo efeito de origem solar (embora o Sol esteja muito distante, a sua massa é bastante para se fazer sentir) e um terceiro efeito, muito mais fraco mas claramente originado por Júpiter. A cintura de asteroides, entre Marte e Júpiter, deve-se ao efeito de maré de Júpiter, que não permitiu que os planetesimais se aglutinassem num planeta. É também este efeito de maré que mantém ativo o vulcanismo de Io, a mais interna das luas galileanas de Júpiter. Como a composição de Júpiter é essencialmente gasosa, o seu raio é definido arbitrariamente como o raio da isóbara de 1 bar, posição que não corresponde a nada de sólido. As imagens que vemos do planeta correspondem aos topos das nuvens.

jupiter figura

13.517 – Google em Marte


Os terráqueos que têm o hábito de brincar no Google Street View agora podem explorar um terreno bem mais interessante que a sua vizinhança. Criado em parceria com a Nasa, o mapa 3D AccessMars permite que você navegue pelo poeirão e conheça de perto cada cratera do planeta vermelho – sem precisar sair do conforto de sua cadeira. Todo o percurso é feito nas costas da Curiosity, sonda que a Nasa mantém em Marte, e pode ser melhorada com ajuda de óculos de realidade virtual ou fones de ouvido.
A Curiosity explora o planeta vermelho há cinco anos, doida para achar qualquer evidência que nos permita continuar sonhando com a colonização do território marciano. Não deixe esse aspecto de carrinho de controle remoto enganar você: a máquina tem cerca de 900 kg – mais ou menos do tamanho de um carro popular. Além disso, ela está equipada com 17 câmeras, estrategicamente posicionadas para gerar imagens de alta qualidade de seu entorno. Foi combinando essas imagens que o Google criou a nova ferramenta.
É possível navegar pelo desktop ou smartphone: basta sair deslizando o mouse (ou o dedo) no cenário, por onde sua intuição astronauta lhe guiar. Porém, em vez de se sujeitar à velocidade real de 3,8 cm por segundo da máquina, o usuário pode se deslocar bem mais rápido.
Com a ajuda de um mapa, é possível navegar 360º por vários pontos específicos, como o exato local onde o veículo aterrissou, no longínquo mês de agosto de 2012. É possível também, para aumentar o grau de realidade da experiência, que sua jornada parta da localização atual do Curiosity. Clicando em partes do veículo, por exemplo, é possível ouvir detalhes sobre seu design; apontando o curso para as vizinhanças, você recebe informações sobre a topografia e geologia do local.
Quem lhe acompanha pelo tour guiado é Katie Stack Morgan, cientista do Laboratório de Propulsão a Jato da Nasa, e dona da voz que tece os comentários sobre a viagem. De acordo com o site Quartz, a Nasa costuma manter os dados da missão sempre atualizados, o que permite gerar novas imagens dentro de uma semana – mais rápido do que a sua rua muda no Street View.

13.511 – A estrela mais misteriosa da galáxia continua confundindo cientistas


estrela-KIC-8462852
A estrela chamada KIC 8462852 já causou bastante agitação na comunidade científica, mas não vai ser desta vez (ainda) que solucionaremos seus mistérios.
Na verdade, eles acabaram de ficar ainda mais confusos.
Em 2015, os astrônomos ficaram intrigados devido a uma série de eventos de perda de brilho rápidos e inexplicados vistos na estrela, enquanto ela estava sendo monitorada pelo Telescópio Espacial Kepler, da NASA.
Para tentar entendê-la melhor, os pesquisadores Josh Simon e Benjamin Shappee e seus colaboradores decidiram fazer uma análise mais longa, acompanhando suas mudanças desde 2006.
Os astrônomos pensavam que a estrela estava apenas brilhando mais fraca com o tempo, mas o novo estudo mostrou que ela também se iluminou significativamente em duas ocasiões, em 2007 e 2014. Esses episódios inesperados complicam ou descartam quase todas as ideias propostas para explicar a estranheza observada em KIC 8462852.
Até agora, os cientistas já tentaram explicar suas diminuições de brilho com diversas hipóteses, desde que a estrela engoliu um planeta próximo a um grupo invulgarmente grande de cometas a orbitando, incluindo até uma megaestrutura alienígena.
Em geral, as estrelas podem parecer escurecer por breves períodos porque um objeto sólido (como um planeta ou uma nuvem de poeira e gás) passa entre ela e o observador, eclipsando seu brilho por um tempo.
Mas mesmo antes dessa evidência de dois períodos de brilho aumentado no passado da estrela, os períodos erráticos de escurecimento vistos na KIC 8462852 eram diferentes de qualquer coisa que os astrônomos já haviam observado.
No ano passado, Simon e Ben Montet, que também é coautor deste estudo, descobriram que, de 2009 a 2012, a KIC 8462852 diminuiu em brilho quase 1%. Seu brilho caiu 2% ao longo de apenas seis meses, o que é impressionante, permanecendo nesse nível pelos últimos seis meses de observações de Kepler.
Examinando cerca de 11 anos de dados, os pesquisadores concluíram que a estrela continuou a diminuir de brilho de 2015 até agora, e está 1,5% mais fraca do que em fevereiro desse ano. Além do escurecimento que a estrela experimentou de 2009 a 2013 e de 2015 até hoje, ela sofreu os já mencionados dois períodos de brilho aumentado também.

E agora?
“Até este trabalho, pensávamos que as mudanças de luz da estrela só estavam ocorrendo em uma direção – escurecendo”, afirmou Simon. “A percepção de que a estrela às vezes fica mais brilhante além de períodos de escurecimento é incompatível com a maioria das hipóteses para explicar o seu comportamento estranho”.
Um próximo passo importante da pesquisa será determinar como a cor da estrela muda com o tempo, especialmente durante as breves quedas de brilho. Essa informação pode ajudar a restringir as possíveis explicações sobre por que essa estrela age da forma que age.
Por exemplo, se o escurecimento for causado por poeira que obscurece a visão da estrela para nós, então ela deve parecer ficar mais vermelha à medida que escurece. Mas se objetos grandes estão bloqueando sua luz, nenhuma mudança de cor seria vista.
“Ainda não resolvemos o mistério. Mas entender as mudanças de longo prazo da estrela é uma peça chave do quebra-cabeça”, concluiu Simon. [Phys]

13.476 – Sonda Ulysses Faz Uma Viagem Para o Inferno


 

ulysses
A estrela mais próxima da Terra não é ainda totalmente conhecida. E precisa ser porque da energia que ele emite depende o controle das naves e estações orbitais que voam nesse espaço. Este ano, uma frota de sondas sobe ao céu para tentar diminuir nossa ignorância
Nunca ele foi focalizado por tantos telescópios e detectores. A sonda Ulysses, solta no espaço desde 1990, agora busca o melhor ângulo para fotografar o seu pólo norte. E, nada menos que oito novos satélites vão subir ao céu. A diferença entre todos esses novos aparelhos e a Ulysses é que eles ficarão em órbita da Terra. A Ulysses gira em torno do centro do Sistema Solar. Mas a missão de todos é uma só: olhar para o Sol.
Ao todo, elas leverão mais de trinta instrumentos espaciais para estudar, principalmente, como a energia solar flui para o nosso planeta. “Estamos aperfeiçoando os nossos sistemas de previsão do tempo no espaço”, disse o astrofísico Richard Marsden, chefe do projeto Ulysses, no Centro Europeu de Tecnologia e Pesquisa Espacial da ESA (Agência Espacial Européia), na Holanda. Com a curiosa expressão “previsão do tempo no espaço”, o cientista se refere à previsão das explosões solares e outras descargas de energia. “Isso é importante para operar com segurança aeronaves, como satélites e estações orbitais, e para conhecermos melhor a influência do Sol sobre a Terra.”
O tema mais importante das pesquisas é o vento solar — a “chuva” de partículas que jorra constantemente da estrela e varre o espaço, envolvendo todos os planetas. Várias das novas sondas fazem parte de programas conjuntos das maiores agências espaciais do mundo, como a ESA e a Nasa.
A Ulysses, um dos projetos das agências americana e européia, tem a tarefa de desbravar os pólos solares, nunca observados antes. Ela passou sobre o pólo sul solar em setembro de 1994 e já enviou novidades. Em maio, deve alcançar o pólo norte.
Aqui você vai ver o que os satélites estão vasculhando no Sol: como ele funciona por dentro, os sinais das atividades nucleares internas, visíveis na sua superfície, e os fenômenos solares que mais interferem no cotidiano terrestre.
O primeiro satélite que a Nasa colocou em órbita da Terra para estudar o Sol foi o Observatório Solar Orbital, em março de 1962. Foram anos importantes para a astronomia solar. Naquela época descobriu-se que o astro não é um corpo estático, mas pulsa, oscilando em tamanho.
Foi também na década de 60 que se chegou a uma segunda descoberta: parte da energia solar é liberada no espaço como neutrinos — partículas subatômicas sem carga elétrica e provavelmente sem massa, que mexem muito pouco com a matéria comum. Para os neutrinos, mesmo os grande corpos como os planetas, não são obstáculo. Eles atravessam todos numa velocidade bem próxima à da luz.
As duas descobertas abriram para a astronomia novas possibilidades de mergulhar no interior do Sol. Medidos aqui da Terra, o fluxo de neutrinos solares se tornou uma forma de calcular as reações nucleares dessa imensa usina. E acabaram levantando novos mistérios.
As pulsações, por outro lado, são usadas hoje pelos astrofísicos como espelhos que refletem diretamente o que acontece nas camadas internas do Sol. É por meio delas que a sonda Soho (sigla em inglês para Observatório Solar e Heliosférico), da Nasa e da ESA, vai acompanhar, a partir deste ano, a viagem da energia pelo interior da estrela, do núcleo até a superfície.
A Soho vai ser seguida, ainda este ano, pela Cluster. Não é uma única, mas, na verdade, quatro sondas que operam simultaneamente. Elas vão analisar o vento solar, montando um mosaico em três dimensões.
Dentro da imensa usina atômica que é o Sol, a cada segundo, 657 milhões de toneladas de hidrogênio são transformados em 652,7 milhões de toneladas de hélio. Os 4,5 milhões de toneladas que faltam na reação são liberados na forma de pura energia. A produção do Sol é um absurdo: 383 bilhões de bilhões de Megawatts. Sim, é impossível imaginar o que isso significa. Mas dá para fazer uma idéia distante: o Sol libera, num único segundo, o equivalente a 13 milhões de vezes toda a energia elétrica que os Estados Unidos consomem num ano inteiro (2,8 bilhões de kilowatts-hora).
Não é preciso chegar muito perto para sentir os efeitos dessa superpotência energética — afinal, essa energia viaja por todo o sistema solar e, portanto, não está restrita à superfície do Sol. Assim, muitas sondas fazem uma boa cobertura dos fenômenos solares permanecendo em órbita da própria Terra. Daqui mesmo, a nave japonesa Yohkoh, entre outras, consegue mostrar toda a violência das explosões solares por meio de fotos da atmosfera solar em raio X.
A Wind, lançada no final de 1994, é outro satélite que não deixa as vizinhanças do planeta. A uma distância máxima de 1,6 milhão de quilômetros da Terra, ela capta as partículas do vento solar antes que elas atinjam o campo magnético terrestre. A segunda etapa da missão será cumprida a partir de dezembro deste ano por outra sonda da Nasa, a Polar, que leva onze instrumentos. Os outros satélites prontos para subir este ano são os americanos Spartan-3, Fast e UV-Star. Também a Argentina vai lançar uma sonda: a SAC-B.
O Sol pode estar muito longe, nas escalas terrestres. Mas 150 milhões de quilômetros não significam nada para a energia. As partículas do vento solar, por exemplo, envolvem todos os planetas, de Mercúrio a Plutão, e vai ainda além. Na Terra, elas criam efeitos como tempestades magnéticas e auroras boreais.
Também para os modernos sistemas de observação, distância não é documento. Tanto é que a sonda Ulysses, a vedete da temporada solar, passou sobre o pólo da estrela em setembro passado, a 345 milhões de quilômetros — quase 2,5 vezes a distância entre o Sol e a Terra — e já apresentou resultados que entusiasmaram a comunidade científica internacional.
Algumas medições confirmaram o que os astrofísicos já sabiam por cálculos: nos pólos, as partículas de matéria são expelidas a 2,7 milhões de quilômetros por hora — quase duas vezes a velocidade registrada no equador. Outros dados são mais surpreendentes: ao contrário do que acontece na Terra, onde a força magnética é mais forte nos pólos do que no equador, o campo magnético do Sol não varia.
Isto é o que o astrofísico Richard Marsden, chefe do projeto Ulysses na ESA, chama de “surpresas e sucessos da missão”. Ele explica que o projeto vai indo tão bem que, em vez de terminar com a passagem pelo pólo norte, em setembro deste ano, a sonda pode permanecer em órbita até o ano 2001. “Aí então, ela pegará o Sol em grande atividade, com imensas erupções jogando mais energia e matéria para o espaço do que o normal”, diz Marsden. “Se compararmos os dois períodos de observação, vamos aprender muito mais.”

Ulysses
A sonda da Nasa e da ESA é a primeira a estudar o espaço interplanetário sobre os pólos do Sol — quer dizer, longe da região da órbita dos planetas. Lançada em 1990, ela coletou dados sobre o pólo sul, em setembro de 1994. Em maio de 1995, deve observar o pólo norte. Pequena, com 3,20 metros de comprimento e menos de 370 quilos, está programada para passar quatro meses fazendo observações.

A sonda Ulysses, lançada em 1990, está estudando pela primeira vez os pólos solares. Ela já sobrevoou o pólo sul e, este ano, vai alcançar o pólo norte.

Traduzindo em números

Apesar de ser uma estrela de tamanho médio, o Sol está entre os 5% dos astros mais brilhantes da Via Láctea.
Distância da Terra: 150 milhões de quilômetros
Diâmetro: 1,4 milhão de quilômetros
Massa: 333 000 vezes a da Terra
Densidade média: 1,41 (a da água é 1, a da madeira, 5, e do ferro, 10)
Período de rotação: 25 dias no equador e 34 dias nos pólos
Força de gravidade: 28 vezes maior do que a da Terra
Temperatura interna: 14,25 milhões de graus centígrados
Temperatura da superfície: entre 3 800 e 6 000 graus centígrados
Composição no núcleo: 64% hélio, 35% hidrogênio e 1% outros elementos
Composição nas demais camadas: 75% hidrogênio, 24% hélio e 1% outros elementos
A terra sente a força de longe
Nosso planeta é como é por causa da energia solar. Mas, além da luz, ela nos chega de outras formas

O gigantesco “saiote” magnético
Por trás da emissão de energia do Sol sobre a Terra está seu campo magnético. Esse íma gigantesco “segura” e vai acumulando as partículas do vento solar até que a imensa pressão cria as erupções. Elas caracterizam períodos de grande atividade do Sol. Os astrônomos costumam comparar seu campo magnético com uma “saia de bailarina”. A rotação faz o saiote ondular. O campo magnético chega a 1 bilhão de quilômetros de distância do Sol. Ou seja, até perto de Saturno.

As explosões e o clima
Houve épocas em que o Sol ficou bem mais fraco e isso pode ter dado origem às eras glaciais. Hoje se sabe que, a cada 22 anos, imensas erupções liberam quantidades anormais de energia. A última tentativa de explicar como as variações de humor do Sol influem no clima da Terra diz que, nesses períodos, a luz visível varia em apenas 0,1%, mas os raios ultravioleta aumentam muito mais. Assim, aquecem a atmosfera da Terra e aumentam a temperatura global.

Luminosa matéria supersônica
As transmissões de rádio, volta e meia, são perturbadas por tempestades magnéticas cuja origem está no Sol. Elas se devem à influência do vento solar, que é formado por partículas com carga elétrica, como elétrons e prótons. Essas partículas invadem a alta altmosfera terrestre a mais de 1,4 milhão de quilômetros por hora e emitem luz, criando as auroras boreais e austrais, e interferindo nos sistemas de comunicação e de navegação das aeronaves. Somente com elas, o Sol perde um milhão de toneladas de matéria por segundo.

Mistérios solares
A estrela que melhor conhecemos ainda esconde muitos segredos.

Quanto mais quente, mais complicado
Um dos mistérios está nos gases da chamada coroa. Como eles podem ser muito mais quentes do que a superfície do Sol? De 13 000 graus, a temperatura salta de repente para mais de 500 000 graus, podendo chegar a 1,5 milhão de graus, na parte mais luminosa da coroa. Tudo indica que a força magnética que impulsiona os jatos de gases também os aquece. Pelos cálculos, porém, a força seria insuficiente para aquecer tanto a coroa. A incerteza, portanto, persiste.

Cadê os neutrinos daqui?
De acordo com a quantidade de radiação que escapa do Sol, sua temperatura interna deveria ser de 15 milhões de graus. Mas, medindo a emissão de neutrinos — partículas subatômicas que fogem do núcleo do Sol em menos de três segundos —, a temperatura não passa dos 14,25 milhões de graus. Mas, se fosse mais frio, o Sol deveria ser menor e brilhar menos. A única explicação é ainda hipótese: apenas parte dos neutrinos seriam captados na Terra. O engano no número de neutrinos emitidos levaria a uma avaliação errada da temperatura.

A impossível pulsação radial
A teoria garante: todos os 10 milhões de tipos de oscilação de tamanho do Sol são caóticos, desordenados. Não há oscilação radial, que atinja a estrela por inteiro, em toda a sua circunferência. Mas o astrofísico Nelson Vani Leister, do Instituto Astronômico e Geofísico da Universidade de São Paulo, mede o diâmetro solar há mais de vinte anos. E garante: o Sol cresce e encolhe 150 quilômetros a cada 1 000 dias. Astrônomos do Observatório de Côte d’Azur, na França, confirmam a observação do brasileiro. “Estamos fazendo um levantamento histórico das pulsações, para ver a que tipo de fenômeno elas podem estar associadas.”

Pulsando como um tambor
O Sol está sempre oscilando. Os gases em ebulição são como ondas acústicas que abalam a superfície — do mesmo modo que a pele de um tambor é abalada com a pulsação do ar em seu interior. Os astrônomos já registraram mais de 10 milhões de pulsações diferentes. Eles conseguem “ouvi-las” com aparelhos chamados espectrógrafos. Nas imagens criadas em computador, as regiões vermelhas estão “afundando” e as azuis, “subindo”.

Soho
O Observatório Solar e Heliosférico (Soho) é um projeto conjunto entre a Nasa e a ESA. Ele vai levantar vôo em outubro na ponta de um foguete Atlas II-AS e deverá orbitar a Terra a cerca de 1,5 milhão de quilômetros. Seus doze detectores vão mandar dados sobre a coroa, o vento solar, as ondas acústicas do Sol, o movimento dos gases da superfície e as variações de radiação.

Cluster
A sonda da Agência Espacial Européia (ESA) vai estudar principalmente os efeitos do vento solar sobre os pólos terrestres. São quatro naves voando juntas. Elas vão carregar instrumentos idênticos que podem mostrar a estrutura e os movimentos das partículas solares que envolvem o planeta, e montar um mosaico em três dimensões. A Cluster entra em órbita da Terra ainda este ano, levada por um foguete Ariane-5.

Yohkoh
O satélite nipo-anglo-americano entrou em órbita terrestre em 1991. Carrega dois telescópios que captam as ondas de raio X. Esse tipo de radiação é emitida por material aquecido a centenas de milhares de graus. A Yohkoh (palavra japonesa para “raio de sol”) tem a grande novidade de bater as “fotos” do Sol a uma velocidade nunca conseguida. Assim, enviadas à Terra, elas se transformam em filmes que mostram detalhes das tremendas tempestades de energia.

Wind
Sua principal missão é analisar o vento solar. Lançado no final de 1994, esse laboratório espacial é projeto conjunto da Nasa e da ESA. Mede 2,40 metros de diâmetro e 1,80 metro de altura. Pesa cerca de 900 quilos. Foi desenhado para permanecer em atividade por três anos, numa órbita entre 29 000 e 1,6 milhão de quilômetros em torno da Terra. A ideia é colher dados sobre o vento solar antes que ele atinja o campo magnético do nosso planeta.

ulysses_orbit

13.467 – Astronomia – Cometa de 26 km de diâmetro em rota de colisão


impactocometa
IMPACTO PODERÁ GERAR A MAIOR EXTINÇÃO EM MASSA QUE O PLANETA JÁ VIVENCIOU!

Novos cálculos realizados sobre a órbita do cometa Swift-Tuttle revelaram que há uma possibilidade de que o corpo celeste colida contra a Terra. Foi o que afirmou o cientista Ethan Siegel, responsável pela descoberta da chuva de meteoros das Perseidas. Ele acredita que o trajeto do asteroide poderá ser acelerado pela gravidade de Júpiter, o que fará com que ele se choque contra o nosso planeta.
O Swift-Tuttle possui um diâmetro de 26 quilômetros. Siegel explica que, com somente um pequeno golpe gravitacional de Júpiter, o corpo celeste poderá viajar até o Sol e ser expulso do Sistema Solar ou se lançar diretamente contra a Terra. Se isso acontecer, há uma possibilidade real para a colisão dentro de 2.400 anos e será a maior extinção em massa que o nosso mundo verá em centenas de milhões de anos.
Embora a comunidade científica afirme que o asteroide não representa uma ameaça iminente para a humanidade, diversos astrônomos reconhecem que esse objeto é, de fato, o mais perigoso para o planeta Terra – dentre os que existem no Sistema Solar atualmente.

History Chanel

 

13.465 – Pode estourar seu cartão de crédito, o fim do mundo está chegando


planeta x
Bricadeiras à parte, tal boato já dura mais de 10 séculos
Um tal David Meade afirmou em um livro que neste sábado (23-09) o mundo acaba com a chegada do famigerado Planeta X. Pela teoria de Meade, o planeta seria na verdade uma estrela com um sistema planetário ao seu redor e estaria vindo em direção à Terra. Além de planetas, o sistema traria também cometas e asteroides e esses seriam arremessados contra a Terra, o que causaria destruição em massa.
Para fechar, tudo com o conhecimento da NASA que, óbvio, estaria escondendo a verdade. As fontes da “pesquisa” de Meade são trechos da bíblia que ele interpreta como acha melhor para vender seu livro e sua ideia e, de acordo com ele, o último eclipse solar do dia 21 de agosto teria precipitado a chegada do Planeta X.
Volta e meia tem gente que vem esse papo: ora com Planeta X, ora com Hercóbulus, ora com o Planeta Chupão e o mais popular entre os conspiracionistas, o Nibiru. Claro, a NASA está sempre envolvida na parada escondendo tudo.
A imagem abaixo é apontada, inclusive, como sendo de Niburu, mas pode trocar por um dos assassinos listado acima. Na verdade não passa da estrela V838 Monocerotis iluminando gás e poeira ejetados numa explosão milhares de anos atrás. E ela está longe, muito longe, tipo… 20 mil anos luz de distância.
Não perca seu tempo e pague suas contas
Para ser direto, não perca seu tempo. Se você tem compromisso no domingo, pode ir, prova ou conta vencendo na segunda, pode continuar pagando ou estudando porque o mundo vai estar inteiro.
Há quem diga que, na antiga Mesopotâmia, já havia citações a todos esses elementos destruidores, mas dar contexto científico ao que parece ser mitologia mal traduzida é um pouco demais. Se um planeta ou uma estrela como essa estivesse nas proximidades do Sistema Solar, nós já teríamos descoberto. E nem adianta dizer que a NASA está acobertando, pois ela não tem controle sobre todos os astrônomos do mundo. Quem me dera se ela me pagasse o que volta e meia me acusam de estar recebendo para permanecer calado…
Os céus do globo são monitorados por vários programas de defesa para justamente avistar algum asteroide com potencial de atingir a Terra. Corpos celestes com mais de 100 metros de tamanho são razoavelmente fáceis de descobrir e os maiores que isso, portanto, muito mais perigosos, são muito fáceis de se encontrar. Não há como uma estrela, ou um planeta gigantesco passar despercebido pela frota de telescópios terrestres. Aliás, tem muito mais astrônomo amador monitorando o céu do que astrônomos profissionais. Como manter uma conspiração com centenas de milhares de pessoas no mundo todo?
Além dos telescópios em Terra, algumas missões espaciais já varreram o céu todo em busca de planetas e/ou anãs marrons mais distantes no Sistema Solar. Nenhuma dessas iniciativas deu resultado positivo. Nem sequer um caso suspeito foi encontrado. Até mesmo Mike Brown, que tem como objetivo de vida descobrir mais um planeta no Sistema Solar e vasculha o céu todo, ano após ano por uma década encontrou alguma coisa suspeita.
Desses planetas todos, o Planeta X é o único que aparece nos livros de astronomia. Quando Percival Lowell procurava pelo nono planeta do Sistema Solar, – que depois viria a ser Plutão; pelo menos, até 2006 – se referia a ele como ‘Planeta X’ para que ninguém desconfiasse do que se tratava. Ele sabia que havia outras pessoas fazendo o mesmo e quando enviava ao seu observatório novas coordenadas o tratava desse jeito: o ‘X’ nada mais é do que a variável ‘X’, a incógnita a ser encontrada, como em qualquer equação matemática.
O fim do mundo está mais próximo de acontecer por iniciativa própria, do que por um planeta, asteroide ou estrela desgarrada. Eu me preocupo mais com a Coreia do Norte do que com Nibiru. Ah, sim, e com as contas no fim do mês que vão chegar implacavelmente.

13.464 – Notícias da Astronomia


new-horizons-2019-mu69-artist-e1505085894462
A sonda New Horizons, que visitou Plutão em 2015, acordou de sua “soneca interestelar”. O aparelho estava hibernando desde abril deste ano para economizar energia e cortar gastos até o desenvolvimento de outra missão pela NASA.
A New Horizons, contudo, não estava totalmente desligada da Terra. Mensalmente ela mandava informações sobre sua localização e estado de conservação, para que os especialistas pudessem monitorá-la.
O plano da agência espacial americana é promover o encontro da sonda com o 2014 MU69, objeto originário do Cinturão de Kuiper — área do Sistema Solar situada próxima à órbita de Netuno.
Se tudo der certo, o evento ocorrerá em 1º de janeiro de 2019 e será a maior aproximação (3500 km) entre uma nave e um fragmento do Cinturão, além do encontro planetário mais distante da história: a mais de 6,5 bilhões de quilômetros da Terra.

(Com informações de EarthSky.)

13.463 – Reservas de água congelada em Mercúrio medem o dobro da área de SP


cratera-mercurio-agua
Cientistas planetários da Universidade Brown, nos Estados Unidos, acabam de publicar um artigo cujos resultados, à primeira vista, podem parecer peculiares. Eles descobriram que a quantidade de gelo presente na superfície de Mercúrio é muito maior do que se pensava.
Mas como pode um planeta tão próximo do Sol apresentar temperaturas tão baixas a ponto de permitir que a água se mantenha em estado sólido?
Basta saber onde procurar. Como não há atmosfera para reter o calor, certas regiões que ficam sempre nas sombras, como os fundos de crateras, são congelantes o bastante. Se essas áreas nas quais a luz não chega estiverem nos polos, onde a incidência de radiação é menor, temos o lugar perfeito para se encontrar água congelada.
Foi em uma dessas regiões, no polo norte do planetinha só 40% maior do que a Lua, que os pesquisadores acharam três grandes lençóis de gelo, em volta dos quais existem diversas reservas com dimensões menores.
“Adicionando esses depósitos de menor escala aos depósitos maiores dentro das crateras, acrescenta-se significativamente ao inventário de gelo superficial em Mercúrio”, disse em comunicado Ariel Deutsch, líder do estudo.

Dados de sonda da Nasa
A pesquisa publicada no periódico Geophysical Research Letters foi feita em parceria com o orientador de doutorado de Deutsch, Jim Head, e Gregory Neumann, do centro Goddard da Nasa. O trio analisou dados coletados em Mercúrio por um dos instrumentos da sonda MESSENGER, que media com laser a refletividade da superfície.
Regiões brilhantes sugerem a presença de gelo, já que o relevo rochoso é mais escuro por refletir menos luz.
Com essas informações, os pesquisadores estimaram a área combinada dos três grandes reservatórios em 3,4 mil quilômetros quadrados — pouco mais de duas vezes a área da cidade de São Paulo.
No terreno em volta das crateras, a baixa resolução do instrumento só permitiu identificar outros quatro depósitos com cerca de cinco quilômetros de diâmetro, mas a equipe afirma que o padrão de refletividade da região como um todo sugere a presença de um grande número de pequenos depósitos.

Água por toda parte
“Achamos que provavelmente existem muitos, muitos mais destes, com tamanhos variando de um quilômetro até poucos centímetros”, diz Deutsch. A situação é semelhante com a verificada na Lua, onde também há abundância de gelo nos polos.
Mas, em primeiro lugar, como essa água toda foi parar em Mercúrio? Há duas hipóteses: teria sido trazida por cometas e asteroides, ou pode ter se formado no próprio solo, a partir de reações químicas entre o oxigênio e o hidrogênio injetado na superfície através do vento solar.
A pesquisa pode ajudar a solucionar o mistério. “Uma das maiores coisas que queremos entender é como a água e outros voláteis estão distribuídos pelo Sistema Solar interior — incluindo a Terra, a Lua e nossos vizinhos planetários”, diz o coautor Jim Head. “Esse estudo abre nossos olhos a novos lugares para se procurar por evidência de água e sugere que existe muito mais dela em Mercúrio do que pensávamos.”

13.403 – Asteroide gigante passa pela Terra nesta sexta-feira


asteroide3
O maior asteroide a se aproximar da Terra em mais de um século passará a uma distância de sete milhões de quilômetros do nosso planeta nesta sexta-feira, afirma a Nasa. A distância é considerada próxima, em termos cósmicos, mas não o suficiente para oferecer qualquer risco. Este asteroide, que possui um diâmetro de 4,4 quilômetros e é conhecido pelo apelido Florence, foi descoberto em março de 1981.
“É o maior objeto celeste a passar tão perto do nosso planeta desde a descoberta do primeiro asteroide nas proximidades da Terra, há mais de um século”, afirmou a agência espacial americana, em comunicado. “Embora muitos asteroides conhecidos tenham cruzado a Terra a uma distância mais curta do que fará Florence na sexta-feira, todos eram menores”, disse Paul Chodas, responsável do Centro para o Estudo de Objetos Próximos à Terra, que pertence à Nasa.
Florence só voltará a se aproximar da Terra em outubro de 2024 e, mesmo assim, não passará tão perto de nosso planeta pelos próximos quinhentos anos, afirmou a agência espacial. Os cientistas aproveitarão esta passagem para estudar mais detalhes do corpo celeste, usando telescópios localizados na Califórnia e em Porto Rico.

“As imagens resultantes devem permitir determinar as dimensões exatas do asteroide e também revelar os detalhes de sua superfície com uma precisão de 10 metros”, estimou a Nasa.

Colisão
As colisões entre grandes asteroides e a Terra não são eventos comuns. “A cada 2.000 anos, aproximadamente, um meteorito do tamanho de um campo de futebol atinge o planeta, devastando a área de impacto e os arredores”, afirmou a agência espacial americana.
Objetos celestes capazes de aniquilar a civilização humana, como o que provocou o fim dos dinossauros há cerca de 66 milhões de anos, são ainda mais raros. Estes ameaçam a Terra uma vez a cada alguns milhões de anos, acrescentou a Nasa, que chegou a calcular em 0,01% a probabilidade de um asteroide grande e potencialmente perigoso nos atingir nos próximos cem anos. Mesmo a queda do meteoro que provocou importantes danos e deixou 1.000 feridos em Chelyabinsk, na Rússia, em fevereiro de 2013, foi um evento incomum. A rocha tinha um diâmetro de 15 a 17 metros e uma massa entre 7.000 e 10.000 toneladas. Ao atingir o solo, liberou uma energia que foi estimada em 30 vezes a potência da bomba de Hiroshima.
A Nasa afirma que ao menos um asteroide do tamanho de um carro atinge a atmosfera da Terra por ano, mas normalmente eles se desintegram antes de tocar o solo.

16.382 – O que é uma tempestade solar e como ela afeta a Terra


tempestadesolarnasa
O Sol não é só uma estrela que influencia os planetas ao seu redor, ele também é um corpo em constante variação, com explosões violentas de radiação, e um exímio formador de energia em quantidades absurdas para os padrões terrestres.
Sua massa — de cerca de 330 mil vezes a da Terra — corresponde a 99,86% da massa do Sistema Solar. O apelido de Astro Rei não é mera força de expressão. Essa esfera gigante é composta, basicamente por Hidrogênio e Hélio, sendo que 3/4 de seu total é reservado ao primeiro elemento. Menos de 2% de sua composição consiste em elementos pesados, como oxigênio e carbono.
Diferente dos planetas que são considerados rochosos, como a Terra e Marte, ou gasosos, como Saturno e Júpiter, nossa fonte de calor é formada por plasma, gasoso na superfície e mais denso conforme se proxima do núcleo.
É exatamente ali, em seu coração, sob uma temperatura de 15 milhões de graus centígrados, que as reações químicas nucleares mais selvagens acontecem. São até 600 milhões de toneladas de hidrogênio convertidos em hélio por segundo. A diferença da massa dos dois elementos é expelida em forma de energia. Para sair do núcleo e chegar até a superfície da estrela, essa energia leva até um milhão de anos — um constraste bem grande com o tempo que as partículas do Sol levam para chegar até a Terra: 8 minutos.
Por isso, a camada mais externa do Sol, a Coroa, está sempre se expandindo, criando os ventos solares, por isso o nome “ejeções de massa coronal”. Quando explosões de grandes proporções acontecem nessa área, partículas solares são liberadas.
Os astrônomos estimam que o nosso Sol tenha 4,5 bilhões de anos.Considerando que uma estrela desta grandeza mantém seu brilho por até 10 bilhões de anos, ainda teremos muito com o que nos preocupar.

Os efeitos na Terra
Os aparelhos tecnológicos que usamos na Terra sofrem grande influência do clima espacial. Aparelhos como GPS e comunicadores que dependem de frequência de rádio, como aviões, podem ser impactados por estes presentes do Sol.
Em 1859, uma das maiores ejeções já lançadas pelo Sol atingiu o campo magnético da Terra, causando o colapso dos serviços telegráficos. Como dependemos muito mais da energia elétrica agora, se isso tivesse acontecido hoje os estragos poderiam ter sido maiores.
Na história, nenhuma tempestade solar jamais afetou uma missão espacial tripulada. Mas, em 1972, a NASA registrou rajadas solares que poderiam matar um ser humano desprotegido do campo magnético da Terra durante as missões Apollo 16 e 17.
Mas, calma, a NASA está sempre atenta às atividades solares. A agência espacial garante que mantém uma frota de naves heliofísicas que monitoram o ambiente espacial entre o Sol e a Terra. Além disso, existem eventos naturais impressionantes e maravilhosos só acontecem graças à influência do Sol, como a aurora boreal e a austral, que são o efeito mais visível do Astro Rei em nosso mundo.

13.329 – Novo telescópio da Nasa poderá ver as primeiras galáxias do Universo


telescopio
Existe uma grande ansiedade para o lançamento do Telescópio Espacial James Webb, em outubro do ano que vem, sobretudo em conexão com o estudo de exoplanetas e a busca de potenciais evidências de habitabilidade e vida fora do Sistema Solar. Mas, quando o próximo grande observatório da Nasa foi projetado, seu objetivo era outro: sua missão principal era — e continua sendo — observar as primeiras galáxias do Universo.
Quem conta essa história é Duília de Mello, astrofísica, pesquisadora associada da agência espacial americana e vice-reitora da Universidade Católica da América, em Washington (EUA).
Os resultados que o novo telescópio trará com exoplanetas também empolgam a cientista. “Depois vamos ter de ter uma missão dedicada a exoplanetas, mas com o James Webb já se espera que se possa fazer alguma coisa transformadora, algo que vá ser legal.”
Em termos de pesquisa de exoplanetas, o foco estará sobre os mundos a orbitar estrelas menores e menos brilhantes — as anãs vermelhas, como Proxima Centauri, a estrela mais próxima do Sol. Contudo, há grande discussão entre os astrônomos se planetas na zona habitável dessas estrelas poderiam ou não ter ambientes favoráveis à vida. O James Webb pode ser o tira-teima neste caso.
Antes que ele possa fazer isso, contudo, o telescópio precisa ser lançado e funcionar corretamente. E Duília de Mello, astrônoma brasileira, afirma que, no momento, esta é a maior preocupação de todos os envolvidos com o projeto. “Ele vai abrir [no espaço] igual a um guarda-chuvinha, e são 65 pontos de abertura. Se um desses der errado, são muitos bilhões de dólares, muita gente a perder o sono. Essa é a ansiedade atual.”

13.311 – Astronomia – Os 5 planetas mais extremos já descobertos


mais-frio

 
O mais frio
OGLE-2005-BLG-390Lb se parece com o código serial de algum videogame, mas é o nome de batismo do planeta mais frio já identificado pelos cientistas. O nome esquisito é mesmo culpa da falta de criatividade dos astrônomos. Toda essa frieza, porém, você pode colocar na conta do astro que o exoplaneta orbita, uma anã vermelha – tipo mais frio de estrela. Para ir para lá, precisaríamos mais do que um casaquinho: a temperatura chega a atingir os 223ºC – negativos, é claro.

O mais quente
A descoberta do mais esquentadinho é notícia recente – os cientistas identificaram o KELT-9b em 2016. Por lá, um dia comum tem temperatura na casa dos 4327 ºC. Para registrar temperaturas tão altas, o planetinha conta com um gerador potente: seu Sol (o quase xará KELT-9) é 2.5 vezes maior que o nosso.

O mais antigo
Quando o PSR B1620-26 b nasceu, isso tudo que hoje a gente chama de universo era mato. O apelido que recebeu dos cientistas, Matusalém, faz referência a um personagem bíblico, considerado o homem que mais tempo viveu. Comparados com esse planeta, no entanto, os 969 anos do personagem não dão nem para o cheiro. Cerca de 2.5 vezes maior que Júpiter esse ancião já conta cerca de 12.7 bilhões de anos.

O menor
O Kepler-37 foi identificado em fevereiro de 2013. Quase do tamanho da Lua, é menor do que Mercúrio e tem um terço do tamanho da Terra. Definitivamente não é dos melhores lugares do universo para programar uma visita nas férias de verão. Além da distância (demorados 210 anos-luz), você teria de encarar 426°C de temperatura.

O maior
Esqueça Júpiter. O DENIS-P J082303.1-491201 b é mais de 28 vezes maior. De tão grande, há cientistas que questionam a classificação atual do planeta, propondo que o gigante gasoso talvez devesse ser considerado uma anã marrom. Sua descoberta foi anunciada em agosto de 2013.

13.309 – Astronomia – Júpiter é o maior e também o primeiro planeta do Sistema Solar


Jupiter_1
De acordo com um grupo internacional de cientistas, Júpiter já girava ao redor do Sol apenas um milhão de anos depois do início de nosso Sistema Solar, há 4,6 bi. O planeta, porém, tinha uma cara bem diferente da que tem hoje – 15 vezes menor que sua versão atual, e com um apetite voraz por gás e poeira
O estudo foi o primeiro a explicar a formação de Júpiter com dados medidos em laboratório. Diferente do que dá para fazer com a Lua, Marte ou a própria Terra, não conseguimos aterrissar no planetão para descolar um pedaço do gigante e estudá-lo sob o microscópio. A saída, então, foi recorrer a análise química de meteoritos antigos para cravar sua data de aniversário.
Após a explosão que originou o Sol, uma grande nuvem de gás e poeira tomava conta do Sistema Solar. O acúmulo contínuo desses detritos em um núcleo rochoso possibilitou a formação de Júpiter – que um milhão de anos depois de estrear em nosso Sistema Solar já tinha peso 20 vezes maior que o terrestre (hoje, nosso vizinho é 317 vezes mais pesado que a Terra).
Todo esse tamanho foi suficiente para “abrir um buraco” na nuvem de poeira criada na juventude do Sol. A gravidade de Júpiter impedia corpos celestes (como meteoritos) de chegarem perto de sua órbita. Isso criou, então, dois anéis empoeirados diferentes: um ficava de Júpiter para frente, e outro estava atrás do planeta. Isolados, ambos os reservatórios não trocavam material entre si por conta do sentinela gasoso.
Sem os planetas irmãos para atrapalhar o acesso à refeição empoeirada, Júpiter foi crescendo, e 3 milhões de anos depois de nascer, já era 50 vezes maior que a Terra. Por ter se aproximado mais do Sol, tornou-se menos resistente à passagem de asteroides, permitindo que meteoritos que estavam em anéis diferentes voltassem a se misturar. Hoje, sabe-se que esses corpos celestes estão concentrados entre Júpiter e Marte – e eventualmente dão seus alôs por aqui, assustando todo mundo ao passar perto da órbita da Terra.
Os cientistas conseguiram descobrir toda essa relação complexa analisando os isótopos de molibdênio e tungstênio em 19 meteoritos. A partir dessas características químicas, conseguiu-se determinar não só a idade de cada um (entre 1 e 4 milhões de anos mais novos que o Sol), mas também o reservatório que cada um habitava.
O fato é que, ainda que a passos curtos, vamos descobrindo cada vez mais informações sobre o vovô de nosso Sistema Solar. Com a sonda Juno, que permanecerá mais uns meses orbitando Júpiter, dá para dizer que estamos mais íntimos do que nunca do planetão – mesmo que observando a 1.26 milhão de milhas de distância.

13.280 – Missão da NASA que “tocará o Sol” faz homenagem a astrofísico lendário


sol
Em anúncio realizado, diretores da NASA decidiram batizar a primeira missão que explorará mais detalhes do Sol com o nome do astrofísico Eugene Parker, responsável pelos primeiros estudos sobre como os campos magnéticos e partículas solares influenciam os planetas do Sistema Solar. O evento organizado pela agência espacial norte-americana aconteceu no auditório da Universidade de Chicago, onde Parker é professor emérito do Departamento de Astronomia e Física.
Thomas Zurbuchen, um dos diretores da NASA, afirmou que essa é a primeira vez que a agência batiza uma missão com o nome de alguém que ainda está vivo – Parker, que iniciou seu estudo sobre o Sol na década de 1950, completará 90 anos de idade no próximo dia 10 de junho.
Em 1958, o astrofísico publicou um artigo com as primeiras investigações a respeito de um fenônemo que ficaria conhecido como vento solar: em sua pesquisa, Parker estudou o comportamento da emissão de partículas e de eletromagnetismo que “escapa” da coroa solar, região conhecida como a “atmosfera externa” do Sol, onde as temperaturas são superiores à própria superfície solar. Ao longo de seu trabalho, o cientista analisou a interação da expansão da coroa solar e de sua relação com os planetas.
Na missão planejada pela NASA, a nave que será desenvolvida precisará lidar com temperaturas altíssimas e radiação em um nível que nenhuma outra precisou lidar. A ideia é que ela traga informações que nos ajudem a prever tempestades solares e a revelar os segredos da nossa estrela mais próxima.
A pequena nave treinará na órbita de Vênus por sete anos antes de ficar a seis milhões de quilômetros da superfície do Sol. Parece meio longe, mas é o suficiente para rastrear os campos magnéticos e analisar algumas partículas solares sem derreter por completo. A missão será lançada em 2018.

13.273 – Astronomia – As Luas de Saturno


luas de saturno,
Saturno tem mais de 60 luas misteriosas. Elas têm oceanos subterrâneos, vulcões de gelo e seriam boas para esquiar. Veja a seguir uma lista com algumas descobertas curiosas sobre algumas luas desse complexo planeta.
A Nasa, agência espacial americana, divulgou a notícia de que Encélado, uma das 60 luas de Saturno, pode conter vida microscópica. Esse oceano fica no polo sul de Encélado e pode abranger boa parte da lua, que tem 500 quilômetros de diâmetro. O mar tem 10 quilômetros de profundidade sob uma grossa espessura de 30 a 40 quilômetros de gelo. No seu fundo estão rochas que podem favorecer o desenvolvimento de pequenas formas de vida.
O oceano subterrâneo não é a única característica impressionante de Encélado. O Observatório espacial Herschel já fotografou vapor de água deixar a lua e formar um grande anel em torno de Saturno. Os cerca de 250 kilos de vapor são expelidos em direção ao planeta a cada segundo por meio de jatos na região do seu polo sul. O anel de vapor possui um raio 10 vezes maior que o do planeta dos anéis mas, apesar de seu enorme tamanho, ele nunca havia sido detectado por ser transparente na luz visível. Com comprimentos infravermelhos do Herschel, no entanto, ele aparece.
Encélado também poderia ser o destino perfeito para turistas espaciais em buscas de esportes na neve. De acordo com dados obtidos pela sonda Cassini, a lua possui, em alguns pontos, uma grossa cobertura de neve. Mapas em alta resolução confirmaram a existência de cristais de gelo mais finos do que talco em pó e que seriam perfeitos para esquiadores. Ao analisar o gelo, os cientistas descobriram que a neve se precipita em um padrão previsível e muito lento: para formar os 100 metros de cristais acumulados, foram necessários cerca de 10 milhões de anos. As grandes ondulações, que escondem um terreno não tão uniforme, terminam em cânions de até 500 metros de profundidade e 1,5 quilômetro de comprimento.
A sonda espacial Cassini, da Nasa, já encontrou um ingrediente do plástico em Titã, maior lua de Saturno. Pequenas quantidades de propileno foram detectados nas camadas mais baixas da atmosfera do satélite. Na Terra, o propileno se junta em longas cadeias e forma o polipropileno, usado na fabricação de copos, brinquedos, material hospitalar, entre outros. Um instrumento da sonda mediu o calor vindo de Saturno e de suas luas, o que comprovou a existência do material. Segundo a Nasa, a detecção reforça a esperança dos cientistas de encontrar outros produtos químicos escondidos na atmosfera de Titã. Essa lua de Saturno tem uma crosta de gelo em sua superfície. A atmosfera é densa, rica em materiais orgânicos, e formada por hidrocarbonetos, compostos químicos constituídos de átomos de carbono e hidrogênio, que se ligam a oxigênio, nitrogênio e enxofre (componentes que estão na base do petróleo e dos combustíveis fósseis da Terra).
Um estudo da Nasa indicou uma possível existência de blocos de gelo na superfície de lagos e mares em Titã. As informações coletadas pela sonda Cassini indicam que Titã pode ter blocos de compostos de hidrogênio e carbono (hidrocarbonetos) congelados na superfície dos lagos e mares de hidrocarboneto líquido. Antes, os pesquisadores imaginavam que os lagos de Titã não tinham gelo flutuante porque o metano sólido é mais denso do que o metano líquido e afundaria. Agora, eles sabem que é possível obter metano e etano em blocos finos que congelam juntos. Etano e metano são moléculas orgânicas cruciais em uma química complexa que pode fazer surgir vida. Apesar da possibilidade de vida em Titã, a temperatura no local é muito baixa. O único líquido que existe em maior abundância na superfície é o metano. Embora tenha uma riqueza em elementos orgânicos, as temperaturas na superfície são muito baixas.
Cientistas da Nasa já descobriram que existe oxigênio em Dione, uma das luas de Saturno. Cassini detectou íons de oxigênio molecular perto da superfície gelada da lua, devido ao bombardeamento por partículas presas no campo magnético de Saturno. Dione é um mundo árido e gelado. Segundo os astrônomos, o astro possui alguns atributos que o tornam adequado para a vida como a conhecemos. Segundo os cientistas, a produção de oxigênio parece ser um processo universal em luas geladas, banhadas por uma forte radiação e presos em um ambiente de plasma.
A sonda Cassini, da Nasa, também já encontrou um rio Nilo em versão miniatura na superfície de Titã. Segundo a Nasa, o curso hídrico tem 400 quilômetros de extensão. Embora o rio tenha alguns meandros, ele é praticamente reto e apresenta um curso na forma líquida. A diferença entre o Nilo e o rio de Titã não está apenas em um deles estar na Terra e o outro em Saturno. O rio encontrado por Cassini não é composto por água, mas por hidrocarbonetos como o metano ou o etano. De acordo com a Nasa, a trajetória do rio de Titã é praticamente reta. Isso indica que o rio segue uma fratura presente na superfície da lua de Saturno. Essas fraturas não significam que exista uma placa tectônica em Saturno, como acontece na Terra. Mas elas podem levar à formação de bacias e de grandes mares.
Além de gelo flutuante, Cassini encontrou evidências que indicam a presença de um possível vulcão de gelo em Titã. A tese é a de que algum tipo de atividade geológica subterrânea possa aquecer o interior dos corpos gelados e, assim, derreter gelo e outros materiais que sairiam através de uma abertura na superfície. Tais vulcões funcionariam de forma similar aos que expelem lava na Terra e em Júpiter, por exemplo. Utilizando radares, a nave Cassini conseguiu juntar informações para acriação de um mapa 3D da região, que se revelou bastante parecida ao monte Etna, na Itália, e ao Laki, na Islândia.

encelado