14.154 – Cientistas aliam medicina e tecnologia para (tentar) vencer o envelhecimento


MEDICINA simbolo
Um dos mitos da Grécia Antiga, que remonta a 700 a.C., conta a história de amor de Eos, a deusa do amanhecer, e Titono, irmão mais velho do rei de Troia. Eos se apaixonou por Titono e pediu a Zeus que concedesse a ele a imortalidade dos deuses. Mas se esqueceu de pedir eterna juventude. Titono viveu por anos a fio, definhando, esquecido pela própria Eos, que o trancou em um quarto escuro até que, finalmente, ele se transformou em uma cigarra.
Alguns milênios depois, a longa busca da humanidade pela vida e juventude eternas ganha, pela primeira vez, contornos científicos. No Vale do Silício, pesquisadores têm tentado unir medicina e tecnologia para encontrar maneiras de nos fazer viver mais e mais jovens, encarando o envelhecimento como uma causa para as tantas doenças associadas a ele e, portanto, passível de tratamento ou mesmo cura.
“Depois de assegurar níveis sem precedentes de prosperidade, saúde e harmonia, e considerando nossa história pregressa com nossos valores atuais, as próximas metas da humanidade serão provavelmente a imortalidade, a felicidade e a divindade”, escreveu Yuval Harari em Homo Deus: Uma Breve História do Amanhã, best-seller publicado no Brasil em 2016 pela Companhia das Letras. “Reduzimos a mortalidade por inanição, a doença e a violência; objetivaremos agora superar a velhice e mesmo a morte”, sentencia o professor de História da Universidade Hebraica de Jerusalém.
O primeiro laboratório biomédico dos Estados Unidos dedicado inteiramente a pesquisar o envelhecimento foi criado em 1999 em Novato, na Baía de São Francisco, a poucos quilômetros do Vale do Silício. Com a missão de acabar com as doenças relacionadas à passagem do tempo, o Instituto Buck acredita que é possível as pessoas aproveitarem a vida aos 95 anos tanto quanto o faziam aos 25.
Além do Buck, laboratórios como o Calico e o Unity Biotechnology têm como objetivos explícitos “resolver a morte” e “combater os efeitos do envelhecimento” e são financiados pelos bilionários Sergey Brin e Larry Page, fundadores do Google, Jeff Bezos, da Amazon, e Peter Thiel, do PayPal. Mas é a Fundação SENS, criada em 2009 pelo cientista da computação inglês Aubrey de Grey, entre outros nomes, que desperta as maiores polêmicas na comunidade científica.
Homo machina
Na visão de Aubrey de Grey, de 56 anos, o envelhecimento deve ser tratado como um fenômeno simples, e nosso corpo visto como uma máquina ou uma engenhoca que pode ser consertada. “O motivo de termos carros que ainda rodam após cem anos é o fato de eliminarmos os estragos antes mesmo de as portas caírem. O mesmo vale para o corpo humano”.
Para desenvolver o modelo que chama de SENS, sigla para Strategies for Engineered Negligible Senescence (estratégias para engenharia de uma senescência negligenciável, em tradução livre), ele olhou para os principais processos que levam ao envelhecimento conhecidos hoje: perda e degeneração das células; acúmulo de células indesejáveis, como de gordura ou senescentes (velhas); mutações nos cromossomos e nas mitocôndrias; acúmulo de “lixo” dentro e fora das células, o que pode causar problemas em seu funcionamento; ligações cruzadas em proteínas fora da célula, que podem gerar perda de elasticidade no tecido em questão.
O motivo de termos carrros que ainda rodam após cem anos é o fato de eliminarmos os estragos antes mesmo de as portas caírem. O mesmo val para o corpo humano”Aubrey de Grey, cientista da computação
Para De Grey, basta tratar cada um desses itens e pronto: nossos problemas de saúde que surgem com a idade acabariam — quase tão simples quanto aplicar e remover um filtro do FaceApp, aplicativo que se tornou febre nas redes sociais nas últimas semanas, com um algoritmo que faz uma simulação fotográfica da aparência que poderemos ter quando mais velhos. “Não haveria limite, assim como não há limite para os carros funcionarem. Morreríamos somente de causas que não têm a ver com quanto tempo atrás nascemos. Impactos de asteroides, acidentes etc.”
Entre os tratamentos propostos pelo cientista — e pelos defensores do antienvelhecimento — estão transfusões periódicas de células da medula em tecidos nos quais as células não são substituídas após a morte, como o cérebro e o coração, e o uso de medicamentos ou vacinas que estimulam o sistema imunológico a combater os danos causados pelas próprias células.
Uma revisão de estudos feita pelos pesquisadores do Buck publicada em julho deste ano na revista científica Nature aponta as duas principais substâncias que se mostraram promissoras no retardamento do envelhecimento em animais, a rapamicina e a metformina. Descoberta pela primeira vez nos anos 1970, a rapamicina inibe o mecanismo molecular chamado mTOR, que controla a divisão, a multiplicação e o envelhecimento das células. Em um experimento feito com ratos, o tempo de vida dos roedores que ingeriram a substância aumentou 14%. Mas ela também suprime o sistema imunológico — não à toa, é usada como imunossupressor para diminuir o risco de rejeição em transplantes de órgãos.
A metformina, por sua vez, é usada no tratamento de diabetes tipo 2 desde a década de 1960. Nos últimos anos, algumas pesquisas realizadas em animais identificaram que ela pode atuar nas funções das mitocôndrias (estruturas responsáveis pela respiração celular) para diminuir inflamações e desacelerar o envelhecimento das células. Também é associada à diminuição do risco de tumores. Segundo a revisão na Nature, os testes clínicos em humanos voltados especificamente para os efeitos no combate ao envelhecimento com a rapamicina e a metformina devem começar a ser feitos em breve.
O problema é que há riscos ainda desconhecidos para todas essas teorias e experiências. Em um dos primeiros perfis sobre De Grey e suas ideias, publicado no MIT Review of Technology em 2005, o cirurgião norte-americano Sherwin Nuland (1930-2014), autor do texto, lembrou que “diferentemente de engenheiros, cujas metodologias De Grey considera a principal contribuição para resolver os problemas de envelhecimento, biólogos não abordam eventos fisiológicos como entidades distintas sem efeitos sobre as outras”. E completa ressaltando que cada uma das intervenções propostas pode resultar em respostas imprevisíveis e incalculáveis da bioquímica e física das células. “Na biologia, tudo é interdependente; tudo é afetado por todo o resto”, escreveu Nuland.
E nós nem entendemos ainda esse “todo o resto”. Embora a ciência conheça os processos que levam ao envelhecimento, ainda se sabe pouco sobre o próprio porquê de envelhecermos. Uma das teorias é a de que a evolução simplesmente não liga para o que acontece conosco quando passamos da idade reprodutiva. Do ponto de vista da seleção natural, ao terminar de reproduzir e superar os primeiros anos de criação e proteção da prole, o indivíduo perde a relevância para a espécie, visto que qualquer vantagem genética evolutiva não será passada adiante. Alguns evolucionistas, entre eles o britânico Alfred Russel Wallace, inclusive flertaram com a ideia de que somos naturalmente programados para morrer para liberar recursos para os mais jovens.
Na corte francesa, membros da nobreza e realeza tentavam combater o envelhecimento e até acreditavam que poderiam viver para sempre se tomassem todos os dias um tônico de cloreto de ouro misturado com éter etílico. A história mais conhecida é de Diane de Poitiers, que morreu aos 66 anos, provavelmente envenenada pelas substâncias.

Ponto de desequilíbrio
O debate avança, então, para a esfera das ciências sociais, políticas e passa até por dilemas morais. Afinal, nós já estamos vivendo muito mais do que nossos antepassados, graças justamente aos avanços na ciência que nos permitiram superar a mortalidade infantil e combater as doenças infecciosas que antes derrubavam cidades inteiras. Mais da metade dos bebês que nascem hoje deve viver até os 65 anos, duas décadas a mais do que quem nasceu em meados do século passado. Atualmente, existem 850 milhões de idosos no mundo — em 2005, eram 670 milhões —, e uma projeção da Organização das Nações Unidas prevê que em 2050 serão cerca de 2 bilhões, ou 22% da população total do planeta.
Mas a sociedade ainda não está estruturada para lidar com essa mudança. “À medida que cada década passa, nós ganhamos anos de vida, mas não instituições preparadas para lidar com isso”, diz a socióloga Vania Herédia, da Universidade de Caxias do Sul, que é presidente do departamento de gerontologia da Sociedade Brasileira de Geriatria e Gerontologia (SBGG). No Brasil, a primeira Política Nacional do Idoso, que assegura direitos sociais e busca criar condições para promover autonomia e participação na sociedade, foi regulamentada em 1996. E somente em 2003 foi aprovado o Estatuto do Idoso, que amplia a atenção às necessidades dessa população.
O país tem também uma condição bastante única no perfil de envelhecimento da população: a velocidade. Enquanto países como França, Itália e Japão observaram o aumento da população idosa ao longo de 150 anos, no Brasil isso aconteceu em 25 anos. Esse desequilíbrio agrava ainda mais os desafios que vêm com o aumento da expectativa de vida, entre eles o grande debate atual na política brasileira, o da reforma da Previdência. Afinal, com mais pessoas vivendo mais e por mais tempo, as contas públicas precisarão ser ajustadas para isso — para ter ideia, nos Estados Unidos dos anos 1940, por exemplo, um americano típico que chegasse aos 65 anos viveria cerca de 17% de sua vida aposentado. A porcentagem hoje já é de 22%, e não para de aumentar.
Surge, então, a pergunta: como seria um mundo em que as pessoas pudessem viver até os mil anos, como acredita De Grey? Para os defensores de frear o envelhecimento, essa seria, na realidade, a solução mais simples para os desafios atuais: para sempre jovens e com a saúde dos jovens, poderíamos continuar trabalhando por mais tempo e ter múltiplas carreiras, e não haveria sobrecarga nos sistemas de saúde e de cuidado com a terceira idade.
Falar sobre tempo de vida ilimitado gera, inevitavelmente, questões filosóficas sobre o sentido da vida em si. O que faríamos com tanto tempo? A discussão pode ir para muitos lados: das possíveis viagens interestelares e infinitas possibilidades de aprendizados à perda total de motivação diante da falta de urgência para completar nossos afazeres.
Na Grécia Antiga, a filosofia epicurista já falava sobre isso, enxergando a vida como um banquete: você fica saciado, depois estufado e, finalmente, sente repulsa. O fato de estarmos acostumados a uma ideia de começo, meio e fim — como o roteiro de uma história — seria um dos fatores que tornam a vida tão especial. Como disse outro filósofo, o romano Cícero, que viveu entre 106 e 43 a.C., em uma de suas obras (adaptada para o português pela editora L&PM sob o título Saber Envelhecer): a velhice é a cena final dessa peça que constitui a existência.
Outra dúvida é em relação ao acesso a esses tratamentos, se um dia estiverem disponíveis. Os próprios pesquisadores antienvelhecimento reconhecem que existe o risco de que eles fiquem concentrados nas mãos dos mais ricos, o que pode, por sua vez, aprofundar os abismos de desigualdade de renda. Ao estenderem a vida indefinidamente, poderiam acumular recursos e fortunas ainda maiores, desestabilizando as relações sociais. No entanto, defendem, essa é mais ou menos a lógica atual. “Se você tem dinheiro, pode pagar por melhores cuidados de saúde, então quão justo já é no momento?”, provoca Lithgow. Para ele, seria como se disséssemos que só podemos usar novas tecnologias ou avanços médicos quando todos tiverem acesso a eles;
E, finalmente, uma das questões éticas mais delicadas de todas: até que ponto devemos ir nessa busca pela extensão da vida? Já existem iniciativas bastante radicais, como a de empresas que fazem congelamento criogênico de corpos. São pessoas que optam por ter os próprios cadáveres resfriados com nitrogênio líquido e mantidos guardados por séculos, na esperança de que, no futuro, novas tecnologias sejam capazes de reanimá-los — quase uma versão moderna das múmias egípcias.
Um caso recente que virou notícia foi o de uma adolescente britânica de 14 anos com câncer terminal que processou o governo pelo direito de ter seu corpo congelado. Desde 2016, seu corpo está conservado em uma clínica nos Estados Unidos que cobrou US$ 46 mil pelo serviço (cerca de R$ 172 mil em valores atuais).
No livro Homo Deus, Harari explica que essa “guerra” contra a morte passou a ser especialmente validada a partir da Declaração Universal dos Direitos do Homem, de 1948. “Somos constantemente lembrados de que a vida é o que há de mais sagrado no universo. A Declaração Universal dos Direitos do Homem declara categoricamente que o direito à vida é valor fundamental da humanidade”, escreve o pensador israelense.
O problema tem sido estabelecer um limite para essa guerra. “Não existe um ponto no qual médicos e cientistas irão se deter e declarar: ‘Até aqui, e nenhum passo a mais.’ Não se afirma na declaração dos direitos do homem que os humanos têm direito à vida até os 90 anos. O que se diz é que todo ser humano tem direito à vida. Ponto.”
Envelhecimento saudável
Simonsick é uma das coordenadoras do Baltimore Longitudinal Study of Aging, um dos estudos sobre envelhecimento mais longos do mundo, que desde 1958 acompanha grupos de voluntários para tentar entender o que pode ser considerado um envelhecimento normal. Por enquanto, a conclusão é de que não existe um envelhecimento normal; o que existe é a possibilidade de melhorar a saúde nos anos finais da vida.
E, para a ciência e medicina tradicionais, essa tem sido uma preocupação muito mais palpável do que a de prolongar ainda mais os anos de vida. Afinal, do ponto de vista da saúde, viver mais não necessariamente significa viver melhor. Há estimativas, por exemplo, de que 20% das pessoas com 80 anos ou mais acabarão sofrendo de Alzheimer.
Quando a discussão é essa, tanto os cientistas antienvelhecimento quanto os contrários ao movimento parecem concordar. “Grande parcela da população só está vivendo mais e mais tempo doente”, diz a geriatra Ivete Berkenbrock, vice-presidente da SBGG. O geneticista do Instituto Buck complementa: “Não há sentido em viver muito tempo em sofrimento”.
A principal diferença entre as vertentes é a forma de lidar com o problema. “O envelhecimento não é uma doença, é uma fase da vida que tem suas próprias doenças prevalentes, assim como ocorre na infância e na adolescência”, diz Berkenbrock. Ela gosta de brincar que a visão da comunidade científica brasileira é pro-aging, ou pró-envelhecimento, visto que entendem que não envelhecer significa morrer cedo e que o mais importante é envelhecer com qualidade, ainda que não considerem errado que a ciência busque a juventude. “Afinal, foi assim que conseguimos aumentar a sobrevida”, lembra.
Nesse sentido caminham as correntes mais moderadas do movimento antienvelhecimento. Elas defendem justamente a busca de novas formas de tratamento para doenças crônicas normalmente associadas ao envelhecimento. “Nosso objetivo é termos melhor saúde, não estender a vida. Mas, ao prevenir e mesmo curar as doenças, acabaremos por estendê-la”, diz o biólogo português João Pedro Magalhães, chefe do Grupo de Genômica Integrada do Envelhecimento da Universidade de Liverpool, na Inglaterra.
A abordagem de Magalhães e sua equipe é um pouco diferente da dos pesquisadores no Vale do Silício. Eles buscam compreender os mecanismos celulares e moleculares de organismos extremamente longevos. Em 2015, sequenciaram o genoma da baleia-da-groenlândia (Balaena mysticetus), mamífero que chega a viver mais de dois séculos e pode ter em seu DNA pistas sobre como superar o câncer. “Queremos entender que truques são esses para tentar aplicar a nós, humanos, e já sabemos que é possível manipular o processo de envelhecimento”, explica Magalhães, referindo-se aos estudos feitos em seu laboratório que aumentaram o tempo de vida de minhocas.
Na opinião de Ivete Berkenbrock, porém, por mais natural que seja essa busca por mais tempo de vida, a ciência não pode fazer promessas sem evidências. No Brasil, tais promessas estão inclusive sujeitas a punição pelo Conselho Federal de Medicina (CFM). Em 2012, foi publicada uma resolução que proíbe a prática da medicina antienvelhecimento. Por enquanto, o consenso do CFM e de outros especialistas “pró-envelhecimento” mundo afora é de que não há fórmula mágica nem pílula para viver mais e melhor. A longevidade se deve a uma combinação de genética, comportamento e fatores ambientais, explica a epidemiologista Somensick.
O mundo moderno, porém, não parece favorecer um envelhecimento saudável, especialmente se levados em conta esses dois últimos fatores. Uma das principais referências globais de longevidade são as Zonas Azuis, regiões com a maior concentração de centenários. O autor norte-americano Dan Buettner, maior pesquisador sobre o tema, identificou cinco: a ilha da Sardenha, na Itália; as ilhas de Okinawa, no Japão; a cidade de Loma Linda, na Califórnia; a Península de Nicoya, na Costa Rica; e a ilha de Icária, na Grécia. Nesta última, os números são especialmente impressionantes: de cada três pessoas, uma chega aos 90 anos, e seus habitantes têm taxas 20% menores de câncer, 50% menores de doenças cardíacas e quase nenhum caso de demência.
Em comum, em todas as localidades das Zonas Azuis os estilos de vida são bem diferentes dos que crescem no restante do mundo, permeados por relações digitais, dietas baseadas em fast-food e falta de tempo até para dormir. Nessas comunidades especiais, destacam-se como parte do cotidiano o envolvimento familiar e social, baixo tabagismo, dietas baseadas em plantas e legumes e prática de atividade física moderada e constante — sem nem pisar em uma academia, na maior parte dos casos.
“Vou dizer uma heresia aqui: em nenhuma delas praticam-se exercícios físicos, pelo menos não da maneira que consideramos os exercícios. Em vez disso, eles estabelecem suas vidas de maneira que são constantemente levados a atividades físicas”, disse Buettner em palestra da plataforma TED já assistida mais de 3,7 milhões de vezes na internet. “As mulheres centenárias de Okinawa ficam se abaixando e levantando do chão. Elas sentam no chão 30 ou 40 vezes por dia. Os sardenhos moram em casas verticais, sobem e descem as escadas. Cada jornada até a loja, a igreja ou a casa de um amigo ocasiona uma caminhada. Eles não têm nenhuma comodidade. Não há nenhum botão para apertar para fazer o trabalho no quintal ou o trabalho doméstico. Se eles querem fazer um bolo, eles fazem na mão. Essa é a atividade física.”
Questão de educação
Tão importante quanto todos esses cuidados, mas nem sempre lembrado, é o papel da educação para a longevidade. Em uma de suas pesquisas recentes, o professor Jay Olshansky, da Escola de Saúde Pública da Universidade de Illinois, em Chicago, apontou que os norte-americanos que receberam melhor educação vivem atualmente entre dez e 14 anos a mais que os menos educados.
“Só falamos em saúde como se fosse algo isolado, mas saúde é um somatório de fatores que passam pela educação”, reforça Berkenbrock. E não tem a ver com capacidade de recitar poesia ou compreender as leis da Física. A educação é, na verdade, um predeterminante para outros aspectos importantes da vida. Pessoas que têm Ensino Superior fumam menos, têm menor probabilidade de ficar acima do peso e mais chances de aderir às recomendações médicas. “É só ver o que está acontecendo no momento em relação à vacinação, com algumas pessoas se recusando a se vacinar”, diz a médica. Uma questão de educação que tem consequências diretas sobre a expectativa e a qualidade de vida.
No entanto, mais do que só a educação escolar formal, na opinião das especialistas da SBGG, ainda falta à sociedade uma lição maior: aprender a lidar melhor com o envelhecimento. “O ideal seria se relacionar com o processo o tempo inteiro, desde a juventude, mas há entre nós uma negação da velhice”, analisa Herédia.
Em vez de buscar combatê-la, seria talvez mais produtivo encará-la como uma fase da vida que pode ser boa e bem aproveitada — ou, ainda, como disse Cícero: por que diabos a velhice seria menos penosa para quem vive 800 anos do que para quem se contenta com 80?

14.153 – Microsoft pretende usar Inteligência Artificial para descobrir cura do câncer


reconhecimento facial
Uma nova iniciativa que visa reunir Inteligência Artificial (IA) com pesquisa em saúde e a experiência de seus parceiros industriais, a fim de proporcionar às pessoas os meios para viver de modo mais saudável e curar doenças mortais. Em um post no blog da empresa detalhando a iniciativa, a Microsoft observou que a indústria da saúde, por exemplo, têm problemas muito complexos, mas a empresa acredita que pode avançar no setor ao incorporar novas tecnologias inovadoras.
“É um grande desafio”, disse o vice-presidente corporativo da Microsoft Research NExT, Peter Lee. “Mas nós acreditamos que a tecnologia – especialmente na nuvem, IA e ferramentas de colaboração e otimização de negócios – será fundamental para a transformação dos cuidados de saúde”.

Como reportado pelo Digital Journal, a empresa está expandindo o Healthcare NExT para a pesquisa sobre o câncer em um esforço para continuar o trabalho feito para encontrar uma cura ou tratamento eficaz para a doença. Contudo, está se aproximando da pesquisa do câncer como uma empresa de tecnologia em vez de médica – ela vê as células vivas como algo semelhante aos computadores, com doenças como o câncer, semelhante a falhas no sistema. Extrapolado para este ponto abstrato, isso significa que a empresa vê células cancerosas como algo que pode ser reprogramado em vez de destruído; excluídos em vez de mortos.
Usando o aprendizado das máquinas para beneficiar o tratamento
A pesquisa sobre o câncer é conduzida em um dos seus laboratórios de computação biológica em Cambridge, Reino Unido. No último ano, um grupo de pesquisadores revelou seu trabalho em um curso para desenvolver um sistema informático que viva dentro das células humanas e reinicie o sistema se as células cancerosas fossem detectadas, limpando assim as células aflitas. Outros projetos incluíram o aprendizado da máquina para melhorar a varredura tumoral, para melhor organizar os dados dos pacientes e descobrir melhores tratamentos.
“Se você olhar a combinação de coisas que a Microsoft faz realmente bem, então faz sentido para a empresa estar nesse setor da indústria”, disse o chefe do grupo de pesquisa de computação biológica no laboratório de Cambridge, em uma publicação da Microsoft Story Labs. “Podemos utilizar métodos que desenvolvemos para programar computadores para programar biologia, e então desbloquear mais aplicações e melhores tratamentos”.
O portal Pharmaphofum comparou os esforços da empresa com o uso da Watson pela IBM para combater o câncer. A Watson que também usa a aprendizagem de máquinas e IA, passou a recomendar os mesmos tratamentos que os médicos e está sendo usado na iniciativa do vice-presidente, Joe Biden, para combater o câncer. Como nós sabemos, a aprendizagem das máquinas pode ser inestimável quando se trata de classificar através de toneladas de dados. A pesquisa do câncer não é diferente, como já vimos, usado para identificar lesões de mama que podem ser transformadas em câncer.
Objetivos ambiciosos para a cura
Descobrir uma cura para o câncer é um objetivo ambicioso de se assumir, e ver o envolvimento da Microsoft na pesquisa é algo que vale ser acompanhado. Dito isto, a empresa expressou o desejo de “capacitar cada pessoa e organização para alcançar mais”. Se pudermos manter esse impulso e foco, quem sabe o que a empresa irá desenvolver.
“Estamos incrivelmente energizados sobre as oportunidades para fazer a diferença nos cuidados de saúde”, disse a Microsoft. “Nós ouvimos atentamente nossos clientes e parceiros no setor de cuidados de saúde, e ouvimos sua mensagem: vamos trabalhar juntos, inovar juntos e criar soluções que possam capacitar as pessoas para levar vidas mais saudáveis”.

14.140 – Como Funciona a Máquina à vapor


Os princípios básicos da máquina a vapor já haviam sido explorados pelo engenheiro e matemático greco-egípcio Hierão de Alexandria, que no século I a.C. estudava o vapor como força motriz, através de sua invenção, a eolípila.
Já no final do século XVII, Denis Papin e Thomas Savery desenvolveram os primeiros motores a vapor, porém, foi
somente em 1972, que Thomas Newcomen revolucionou a área. O chamado “motor de Newcomen”, a partir de então começou a ser amplamente usado.
Com o avanço, os motores a vapor começaram a movimentar as primeiras locomotivas, barcos, fábricas, bem como as minas de carvão. As primeiras máquinas a fazer uso da energia a vapor eram usadas para retirar água acumulada nas minas de ferro e carvão e ainda eram utilizadas na fabricação de tecido.

Naquela época estava ocorrendo a chamada Revolução Industrial, em que o número de indústrias teve um crescimento vertiginoso, e com isso, a necessidade de usar cada vez mais máquinas para suprir o trabalho humano.

A primeira máquina a vapor foi utilizada por Thomas Savery, na retirada de água de poços de minas. A máquina transformava a energia armazenada no vapor quente em energia utilizável.
Na máquina de Savary, o vapor, que é proveniente da água aquecida até a ebulição em uma caldeira, entrava em uma câmara. Tal câmara, após ser fechada, era arrefecida por aspersão da água fria, e assim acontecia a condensação do vapor no seu interior.
Uma máquina a vapor não cria energia, mas sim usa o vapor para transformar a energia quente que é liberada pela queima de combustível. Toda máquina a vapor possui uma fornalha para que seja realizada a queima de carvão, óleo, madeira ou mesmo outro combustível para produzir energia calorífica.
Além disso, a máquina a vapor dispõe de uma caldeira. Assim, o calor proveniente da queima de combustível leva a água a transformar-se em vapor no interior dessa caldeira. Com o processo, o vapor expande-se, e ocupa um espaço muitas vezes maior que o ocupado pela água. A energia da expansão produzida pode ser aproveitada de duas formas: A primeira, deslocando um êmbolo num movimento de vaivém ou, acionando uma turbina.

Conheça o funcionamento de uma máquina a vapor

maquina_vapor

Assim sendo, na caldeira, o calor faz com que a água entre em ebulição. Assim, quando a válvula A está aberta e a válvula B permanece fechada, o vapor acaba entrando sob pressão e empurrando o êmbolo para cima. Deste modo, a roda R e a biela B acabam sendo deslocadas. O êmbolo, ao atingir o topo do cilindro, a válvula A acaba fechando para cortar o fornecimento de vapor, e a válvula B abre-se, fazendo com que o vapor saia do cilindro e entre no condensador.
Através da água corrente o condensador é mantido arrefecido. Assim que o vapor deixa o cilindro a pressão diminuiu no seu interior e a pressão atmosférica empurra o êmbolo para baixo. O êmbolo, ao atingir o fundo do cilindro, a válvula B se fecha a válvula A abre. A partir de então, o vapor entra no cilindro e o processo começa novamente.
Locomotivas a vapor
No século 19 surgiram as primeiras locomotivas movidas a vapor, sendo que geralmente tinha sua energia gerada pela queima de carvão nas fornalhas. Esse modelo de locomotiva foi usado até o final da Segunda Guerra Mundial.

A primeira locomotiva a vapor foi construída por Richard Thevithick, sendo que o primeiro teste foi feito em 21 de fevereiro de 1904, porém, somente após alguns anos o projeto acabou sendo usado. A tecnologia, no decorrer dos seus 150 anos de uso da energia a vapor foi sendo aprimorado.
As LOCOMOTIVAS A VAPOR são constituídas basicamente de:

1) CALDEIRA : local onde é produzido o vapor de água;

2) MECANISMO: Conjunto de elementos mecânicos que tem pôr objetivo de transformar a energia calorífica dos combustíveis em energias mecânica para assim transmitir o movimento resultante dos êmbolos aos eixos motrizes e finalmente, transformar esse movimento retilíneo alternado em circular contínuo para as rodas;
3) VEÍCULO: constituído pela carroceria, rodas, eixos, caixas de graxa e molas.

14.137 – IA – Algoritmos Controlam Tudo


algoritmo
Quando você procura por um novo par de sapatos online, escolhe um filme na Netflix ou solicita um aluguel de carro, provavelmente um algoritmo tem sua palavra para dizer no resultado.
Algoritmos estão sendo experimentalmente usados para escrever novos artigos de dados brutos, enquanto a campanha presidencial de Donald Trump foi feita por profissionais de marketing comportamental que usaram um algoritmo para localizar as maiores concentrações de “eleitores persuasíveis”.
Mas, embora tais ferramentas automatizadas possam introduzir uma certa dose de objetividade em decisões antes subjetivas, os temores estão aumentando em relação à falta transparência que algoritmos podem acarretar, com pressão crescente para aplicar padrões de ética ou “responsabilização”.
A cientista de dados Cathy O’Neil adverte para não “confiar cegamente” em fórmulas para determinar um resultado justo.

“Algoritmos não são inerentemente justos, porque a pessoa que desenvolve um modelo define êxito em alcançar o resultado desejado”, disse ela.

Aumentando as desvantagens
O’Neil argumenta que, embora alguns algoritmos possam ser úteis, outros podem ser nefastos. Em seu livro de 2016, “Weapons of Math Destruction”, ela cita alguns exemplos preocupantes nos Estados Unidos:
– Em 2010 , as escolas públicas em Washington DC despediram mais de 200 professores – incluindo vários professores respeitados – com base nas pontuações de um algoritmo com uma fórmula que avaliava seus desempenhos.

– Um homem diagnosticado com transtorno bipolar foi rejeitado para um emprego em sete grandes varejistas após um teste de “personalidade” de terceiros o considerar um grande risco baseado em sua classificação algorítmica.

– Muitas jurisdições estão usando “policiamento preditivo” para transferir recursos para prováveis “áreas perigosas”. O’Neil diz que dependendo em como os dados são alimentados no sistema, isso poderia levar a revelar mais crimes menores e gerar um “ciclo contínuo” que estigmatiza comunidades pobres.

– Alguns tribunais contam com fórmulas classificadas por computadores para determinar sentenças de prisão e liberdade condicional, o que pode discriminar minorias ao levar em conta fatores de “risco”, como seus bairros, amigos ou familiares ligados ao crime.

– No mundo das finanças, os corretores coletam dados de fontes online e outras fontes como novas formas de tomar decisões sobre crédito ou seguro. Isso muitas vezes amplifica o preconceito contra os menos favorecidos, argumenta O’Neil.
Suas descobertas foram repercutidas em um relatório na Casa Branca ano passado alertando que sistemas algorítmicos “não são infalíveis – eles contam com entradas imperfeitas, lógica, probabilidade e pessoas que os planejam”.
O relatório observou que sistemas de dados podem, de forma ideal, ajudar a eliminar o viés humano, mas alerta contra algoritmos que “desfavorece sistematicamente certos grupos”.

Rastros digitais
Zeynep Tufekci, um professor da Universidade da Carolina do Norte que estuda tecnologia e sociedade, disse que decisões automatizadas são frequentemente baseadas em dados coletados sobre pessoas, algumas vezes sem o conhecimento delas.
“Estes sistemas computacionais podem deduzir todo tipo de coisa sobre você a partir de seus rastros digitais”, Tufekci disse em uma palestra no TED recentemente.
“Eles podem concluir sua orientação sexual, seus traços de personalidade, suas tendências políticas. Eles têm um poder preditivo com altos níveis de precisão”.
Estas percepções podem ser úteis em certos contextos, como ajudando médicos profissionais a diagnosticar depressão pós-parto, mas injustas em outros, ele disse.
Parte do problema, ele disse, vem do fato de pedir para computadores responder questões que não tem uma única resposta certa.
“São questões subjetivas, abertas e carregadas de valores pessoais, perguntando quem a empresa deve contratar, qual atualização de qual amigo deve ser mostrada, qual condenado é mais provável de reincidir”.

14.135 – A Biônica é Uma Realidade?


mao biônica
Em filmes e outras histórias fictícias, faz tempo que conhecemos seres humanos com alguma habilidade melhorada pela tecnologia, ou corpos quase totalmente biônicos, como o Ciborg, do universo dos quadrinhos da DC Comics. Mas, na vida real, essa tecnologia já é observável em experimentos científicos e protótipos de diversos tipos, como replicação de órgãos, devolução da visão e braços mecânicos comandados pelo pensamento.
As possibilidades são muitas e tendem a crescer de forma constante, ao aliar ciência e tecnologias cada vez mais avançadas, aproximando-se de nosso dia a dia. Nesse texto, a ideia é apresentar algumas dessas perspectivas e como elas já estão sendo aplicadas. Vamos lá?

Avanços em prol da saúde
As próteses são um tipo bem conhecido de tecnologia biônica. Substituindo membros como pernas e braços, elas tornam possível a ação de um atleta ou mesmo a possibilidade de uma criança escrever. Seguindo essa ideia, um pesquisador da Califórnia criou um chip que pode substituir o hipocampo, parte do cérebro que controla a memória e a compreensão espacial, o que será útil em casos de Alzheimer e derrames. No entanto, um implante no cérebro é muito mais complicado. Por isso, são necessários muitos testes.
Outra iniciativa de pesquisadores criou células artificiais que podem imitar a movimentação dos glóbulos brancos pelo corpo. Feitos de polímeros, esses protótipos são muito úteis para a medicina, uma vez que permitem levar remédios para locais necessários do corpo, ajudando a combater doenças como o câncer.
Pessoas com disfunções renais que passam por longos tratamentos de diálise terão seus problemas resolvidos: um rim artificial portátil, pequeno, leve e automatizado, que pode ser usado o tempo todo. Assim, não será mais preciso ficar horas ligado a um aparelho para que as necessidades fundamentais, como limpeza do sangue, sejam realizadas.
Outro órgão que também teve um modelo artificial pensado é o pâncreas. O modelo artificial portátil será uma mistura de duas tecnologias já existentes: a bomba de insulina e o monitor de glicose. Com isso, o pâncreas irá monitorar o açúcar no sangue e ajustar o nível de insulina necessário para o corpo, o que será muito benéfico para quem tem diabetes e precisa de monitoramento constante.
Outros estudos estão sendo realizados em várias partes do mundo, por universidades e governos, em busca de melhorias constantes nos tratamentos. Como é o caso do estudo que dura desde 1960 em torno do tecido ósseo que cresce sozinho. O importante é manter o foco e não desistir.
Tecnologia a serviço da qualidade de vida
Além de pesquisas envolvendo melhorias nos tratamentos de saúde, uma das maiores conquistas da era biônica são as próteses, uma interação entre a biologia e o design tecnológico. Quem cita essa relação é Hugh Herr, chefe do grupo de Biomecatrônica do Massachussets Institute of Technology (MIT) Media Lab, nos Estados Unidos, em conferência do TED no ano de 2015. O estudioso é um dos exemplos de suas próprias pesquisas: há 30 anos, ele perdeu as duas pernas em um acidente e utiliza membros biônicos.
No MIT, ele e sua equipe criaram a nova classe de próteses bio-híbridas inteligentes e exoesqueletos, que têm o objetivo de melhorar a qualidade de vida de milhares de pessoas com deficiências físicas. Um exemplo dos grandes avanços das pesquisas do instituto é uma prótese que reproduz uma perna inteira, do quadril ao pé, que possui um dispositivo capaz de imitar uma perna natural, possibilitando a pessoas amputadas andar e correr com níveis iguais a uma perna biológica.
Alguns braços biônicos funcionam com a força do pensamento, imitando os comandos biológicos enviados pelo cérebro ao corpo. Nesse caso, o braço artificial se liga ao cérebro pelos nervos motores e, quando a pessoa decide mexer o membro, os nervos enviam o sinal para o braço biônico, se tornando um processo natural. A intenção dos pesquisadores, como diz Hugh Herr, é melhorar ainda mais o processo e a utilização de membros biônicos, comunicando sensações, como temperatura e pressão, e adequando ao ritmo dos órgãos normais.
Uma das propostas mais inovadoras dos estudos dessa tecnologia são as próteses de retina, que podem trazer aos cegos a chance de ver princípios de luz, movimento e forma. As próteses estão em fase de testes. Sua particularidade é gravar informações visuais básicas por meio de uma câmera, transformá-las em sinais eletrônicos e enviar a eletrodos implantados no paciente.

Potencializando as capacidades humanas
Os maiores exemplos da era biônica são os atletas paralímpicos. Nas modalidades do atletismo, por exemplo, as próteses de pernas são o ingrediente principal. E os esportistas são esforçados, treinam bastante e precisam se adaptar a um novo modo de correr, ou mesmo aprender a correr, no caso de quem nasceu com a deficiência. Ao observar esses esportes, é possível enxergar como as potencialidades humanas são aumentadas e como a era biônica é fundamental para que eles existam.
Além das Paralimpíadas, há também dançarinos, bailarinos, escaladores e cientistas, como Hugh Herr, que tiveram suas vidas transformadas pela tecnologia. Em sua palestra sobre os estudos da biomecatrônica, ele conta como a biônica definiu sua corporalidade na ocasião de seu acidente. “Naquele momento, eu não vi meu corpo como quebrado. Eu argumentava que o ser humano jamais pode estar quebrado. A tecnologia é que está quebrada. A tecnologia é que é inadequada”, disse.
A expectativa é que as aplicações da era biônica estendam-se e sejam potencializadas por novas tecnologias. Assim, cada vez mais pessoas terão seus desafios superados e a realidade tenderá a se diferenciar ainda mais, oferecendo novas possibilidades e criando novas chances para as pessoas.

14.134 – Inteligência Artificial – Robô Laura Pode Revolucionar a Medicina


robo Laura
O Laura trabalha com tecnologia cognitiva e atua, ao lado de médicos, na prevenção da sepse (septicemia) e na diminuição do número de mortes causadas por essa doença violenta.
O software tem a capacidade de aprender analisando, entendendo e até conversando.
Jacson Fressatto é o idealizador do Robô Laura.
Ele perdeu a filha Laura aos 18 dias de vida. Recém-nascida, Laura foi vítima de septicemia, uma infecção silenciosa que tira a vida de milhares de pessoas em todo o mundo diariamente. O luto, que se transformou em uma caça por culpados, acabou revelando um trabalho, talvez uma missão para Jacson. Isso porque a sepse é ardilosa e, exatamente por causa da pequena Laura e de uma força paterna aliada ao conhecimento analítico, agora a doença está começando a perder dentro de seu próprio jogo. Isso porque o robô Laura nasceu.
O Robô Laura tem a capacidade de salvar mais de 12 mil vidas por ano no Brasil
Hoje, a septicemia atinge 2,5 milhões de brasileiros por ano. Dentro dessa conta, cerca de 250 mil acabam morrendo. No mundo, ela mata uma pessoa a cada 1 minuto e meio. Agora, com a Laura Networks, Jacson Fressatto está tentando levar o Robô Laura para os hospitais interessados. Para os hospitais filantrópicos brasileiros, Fressato até pretende doar a tecnologia. De acordo com o site oficial da empresa, o Robô Laura tem a capacidade de salvar mais de 12 mil vidas por ano no Brasil, reduzindo em 5% o índice de mortes. O objetivo é poupar tempo, recursos e vidas — tecnicamente, Laura é o primeiro robô cognitivo de gestão de risco.
O primeiro robô cognitivo em gestão de risco do mundo é brasileiro e já atua em alguns hospitais. Com foco em saúde, este robô é capaz de aprender e, a partir daí, identificar quando um paciente está vulnerável. Por isso, é preciso dedicar um tempo ensinando-o o que pode indicar perigo, como aumento de temperatura, por exemplo. Uma vez aprendido, ele consegue fazer o trabalho sozinho.

14.131 – O Rádio Transistorizado


radio Nissei
Rádio é Nissei, o resto eu não sei

Receptor de rádio portátil que usa circuito baseado em transistor. Os primeiros rádios foram desenvolvidos em 1954, seguido da invenção do transistor que foi em 1947, tornaram-se o dispositivo de comunicação eletrônico mais popular da história, sendo produzidos bilhões nos anos de 1960 a 1970. Seu tamanho de bolso provocou uma mudança nos hábitos de escuta de música, permitindo que as pudessem ouvir música em qualquer lugar. No começo da década de 1980, os rádios AM baratos foram substituídos por aparelhos com melhor qualidade de áudio como, CD players portáteis, leitores de áudio pessoais, e caixas de som.

Antes do transistor ter sido inventado, os rádios usados eram criados usando válvula eletrônica. Embora tenham sido criados rádios portáteis valvulados, eles eram volumosos e pesados, devido às grandes baterias necessárias para abastecer o alto consumo de energia dos tubos.
Bell Laboratories demonstrou o primeiro transistor em 23 de dezembro de 1947. Depois de obter a proteção das patentes, a empresa realizou uma coletiva de imprensa em 30 de junho de 1948, onde foi demonstrado um protótipo de rádio transistor.
Há muitos pretendentes ao título de primeira empresa a produzir rádios transistorizados. Texas Instruments havia demonstrado a utilização de rádios AM (modulação de amplitude) em 25 de maio de 1954, mas o seu desempenho foi bem inferior ao de modelos valvulados. Um rádio foi demonstrado em agosto de 1953 em uma Feira em Düsseldorf pela empresa alemã Intermetall. Foi construído com quatro de transistores feitos à mão pela Intermetall. No entanto, como acontece com as primeiras unidades, a Texas Instruments (e outros) construíram apenas protótipos. RCA havia demonstrado um protótipo de rádio transistorizado em 1952, mas Texas Instruments e Regency Divisão de IDEA, foram os primeiros a oferecerem um modelo de produto a partir de outubro 1954.
Durante uma viagem aos Estados Unidos em 1952, Masura Ibuka, fundador da Tokyo Telecommunications Engineering Corporation (atual Sony), descobriu que a AT&T estava prestes a tornar o licenciamento para o transistor disponível. Ibuka e seu parceiro, o físico Akio Morita, convenceu o Ministério do Comércio e Indústria Internacional (MITI) japonês para financiar a taxa de licenciamento $25.000. Durante vários meses Ibuka viajou por todo os Estados Unidos tomando ideias dos fabricantes de transistores americanos. Com as ideias melhoradas, Tokyo Telecommunications Engineering Corporation fez seu primeiro rádio transistor funcional em 1954. Dentro de cinco anos, Tokyo Telecommunications Engineering Corporation cresceu de sete funcionários para cerca de quinhentos.
Outras empresas japonesas logo seguiram a sua entrada no mercado americano e o total de produtos eletrônicos exportados do Japão em 1958 aumentou 2,5 vezes em comparação a 1957.

Pocket_radio_open_english

14.124 – Prótese biônica tem resposta mais rápida do que mão humana


bionica 2019
Cientistas da Escola Politécnica Federal de Lausanne, na Suíça, anunciaram o desenvolvimento de uma prótese biônica capaz de traduzir os comandos enviados pelo cérebro dos usuários e responder mais depressa do que uma mão humana. O dispositivo combina elementos de robótica com tecnologias de neuroengenharia e permite que pessoas amputadas tenham muito mais controle sobre os movimentos e funções da mão prostética.

Mão biônica
O funcionamento da prótese está baseado em sensores que são colocados no coto da pessoa amputada e que são capazes de detectar a atividade muscular quando o paciente tenta movimentar os dedos – que já não estão lá. Além disso, os pesquisadores desenvolveram um algoritmo de machine learning que, ademais de decodificar os impulsos neuromusculares enviados pelo cérebro da pessoa e que são registrados pelos sensores, interpreta os sinais e aprende os movimentos para treinar o sistema e melhorar o desempenho da prótese.
De acordo com os cientistas, para que o algoritmo aprenda a decodificar as intenções do usuário e traduzi-las nos movimentos dos dedos da prótese, a pessoa precisa realizar uma variedade de movimentos para que o sistema aprenda a identificar qual atividade muscular corresponde a qual ação.
Com isso, depois que o algoritmo entende as intenções do usuário, o amputado consegue controlar cada dedo da mão biônica de maneira independente. Mas tem mais: a prótese também é equipada com sensores de pressão que “ensinam” o algoritmo a reagir sempre que o dispositivo entra em contato com um objeto qualquer para que os dedos se fechem automaticamente sobre ele, mesmo na ausência de informações visuais.
O resultado dessa combinação de tecnologias faz com que a resposta do equipamento seja como o de uma mão de verdade. Bem, na verdade, a reação é ainda mais rápida. Para se ter ideia, quando seguramos algo e esse objeto começa a deslizar de nossa mão, nós temos apenas um par de milissegundos para reagir e não deixar a coisa cair. Já a prótese – que possui sensores nos dedos – consegue estabilizar o objeto e segurá-lo antes mesmo de o cérebro se dar conta que ele está escapulindo e possa responder.

Próteses do futuro
O sistema foi testado por 10 pessoas – 3 amputadas e 7 não – e os resultados foram bastante impressionantes, tanto que os cientistas por trás do projeto acreditam que, além de ser aplicada a próteses, a tecnologia poderia ser empregada em interfaces cérebro-computador com o objetivo de ajudar pacientes com mobilidade limitada.
Ainda é necessário refinar o algoritmo e trabalhar no sistema até que as mãos biônicas possam sair dos laboratórios e sejam disponibilizadas para quem precisa delas. Já sobre os pacientes paralisados, considerando que já existem iniciativas focadas no desenvolvimento de dispositivos superflexíveis que podem dar origem a implantes cerebrais com potencial de melhorar a comunicação de pessoas incapazes de se mover com máquinas e ajudar que elas se ganhem mais autonomia – a Neuralink, fundada por Elon Musk, é uma das startups trabalhando nessa área –, os avanços não devem demorar em chegar.

14.123 – Neuro Prótese para Paraplégicos


Uma pesquisa liderada pelo neurocientista brasileiro Miguel Nicolelis permitiu que pacientes paraplégicos caminhassem. O trabalho foi publicado na revista Scientific Reports e utiliza várias abordagens combinadas para o feito. A principal delas é um dispositivo de estimulação muscular e de uma interface cérebro-máquina, que permite controlar outros aparelhos por meio do pensamento.
Na prática, o paciente imagina que sua perna está se movendo, o que aciona a contração de oito músculos naquele membro e permite que os passos sejam dados. Os dois participantes do estudo possuem paraplegia crônica e, de acordo com o artigo da equipe de Nicolelis, foram capazes de caminhar em segurança apoiados entre 65% e 70% de seu peso corporal. Além disso, deram 4580 passos durante os testes.
Melhoras
O trabalho relata que foram encontradas melhoras cardiovasculares e houve menor dependência de assistência para se locomover. Outro benefício reportado pela equipe foi uma recuperação neurológica parcial dos dois pacientes. Um deles tem 40 anos e sofreu a lesão medular há quatro, enquanto o outro tem 32 e sofreu a lesão há 10 anos.

A pesquisa faz parte do projeto Andar de novo (Walk Again Project), que é um consórcio internacional sem fins lucrativos reunindo pesquisadores dedicados a estudar a recuperação de pacientes com lesões medulares.
Esta não foi a primeira demonstração de quão promissor é o dispositivo desenvolvido pela equipe de Nicolelis, que lidera um grupo de pesquisadores na área de Neurociência na Duke University, nos Estados Unidos. Uma pesquisa desenvolvida por ele permitiu que um jovem paraplégico chutasse uma bola durante a abertura da Copa do Mundo de 2014, no Brasil.

14.116 – Uber Vai Lançar Carro Voador



O uberAIR é um projeto da Uber que pretende trazer carros voadores para transporte urbano. O objetivo é que os usuários possam pedir o serviço da mesma forma que já fazem no aplicativo de corridas. Para transformar a ideia em realidade, a empresa vem trabalhando em parceria com outras companhias para o desenvolvimento dos veículos, que devem obedecer a uma série de critérios estabelecidos pela Uber.
A empresa já revelou que pretende começar os testes no próximo ano, inclusive no Brasil, para que o serviço faça sua estreia em 2023. Além disso, São Paulo e Rio de Janeiro são as cidades brasileiras com mais potencial para receber a novidade. Veja, a seguir, todos os detalhes do veículo.

uberAIR: testes do carro voador podem começar já em 2023

Antes de começar, vale ressaltar que o protótipo disponível no escritório não funciona, ou seja, ele não voa de fato. O veículo foi criado para que as pessoas que trabalham no projeto possam ter uma noção de como o carro voador deve funcionar e testar seus futuros recursos. Isso é importante para que a Uber possa estabelecer critérios, visto que são outras empresas que vão criar os veículos.

O protótipo disponível foi desenvolvido em parceria com a Safran, uma companhia francesa que atua no ramo da aviação. No caso do Brasil, é a Embraer que vai fabricar o carro voador. Segundo Mark Moore, diretor de engenharia para aviação da Uber, algumas empresas parceiras já estão testando a capacidade de voo de seus veículos, mas ele ainda não pode revelar em quais lugares isso vem sendo feito.

O carro voador tem espaço para o piloto e mais quatro passageiros. No entanto, para evitar distrações, o motorista fica separado por um vidro. Vale ressaltar que a Uber já revelou que tem planos futuros de criar carros voadores autônomos, tornando o serviço mais rentável.

Ao todo, são seis portas: três de cada lado. O assento é semelhante ao de um helicóptero e foi pensado para veículos de decolagem vertical (eVTOL). Um detalhe interessante é que o cinto de segurança é bem apertado para que os passageiros estejam seguros durante o trajeto. Há ainda um espaço na parte de trás dedicado às bolsas, visto que não é possível carregar objetos no colo. Vale lembrar, no entanto, que o carro terá um limite de peso e que a bagagem deverá ser pequena.
Com relação à estrutura, o carro tem uma cabine acústica, que isola os sons externos, mas permite que os passageiros conversem entre si. Além disso, alguns detalhes, como a iluminação, são pensados para fazer com que o veículo pareça maior do que é, diminuindo a sensação de claustrofobia. O uberAIR também deve estar preparado para enfrentar o tempo ruim, assim como um helicóptero. De qualquer forma, caso a empresa identifique riscos em determinado dia, pode suspender a operação por causa do clima.
A empresa já revelou que tem planos de testar o projeto no Brasil e que as cidades com mais potencial para os testes são Rio de Janeiro e São Paulo. Para os veículos participantes, a empresa prevê velocidades entre 240 km/h e 320 km/h, além de autonomia para 60 milhas (96,5 km). Vale lembrar que o uberAIR não tem como objetivo percorrer longas distâncias. O carro deve ser capaz de realizar trajetos curtos, facilitando o dia a dia do usuário.
Para o chefe do projeto Uber Elevate, Eric Alisson, o Uber Copter, serviço de corridas de helicóptero disponível em Nova York (EUA), está oferecendo alguns aprendizados para a companhia. Um deles se refere aos motoristas, que deverão ter conhecimentos especiais para pilotar um carro voador. Ainda não está claro como será feita a seleção e o treinamento deles, mas no caso das corridas de helicóptero, a Uber vem trabalhando em parceria com uma empresa especializada em aviação, uma possibilidade que também pode funcionar para o uberAIR.
O uberAIR é mais um projeto que reforça o posicionamento da Uber como uma empresa de mobilidade. Além do tradicional serviço de corridas, a companhia vem investindo em outros recursos que concentram diversas opções de transporte, como bicicletas elétricas e patinetes. Outras novidades incluem o Uber Transit, recurso que mostra o transporte público em tempo real e já está disponível na cidade de São Paulo. Há ainda um projeto de carro autônomo, que promete economizar tempo e espaço em corridas solicitadas pelo app.

14.098 – Mega Byte – Motoristas da Uber sofrem derrota na justiça brasileira


Uber
O STJ – Superior Tribunal de Justiça – deu uma grande vitória à Uber e aos aplicativos de transporte de modo geral: afirmou que os motoristas que trabalham com essas empresas não têm vínculo empregatício com elas e, portanto, não podem ser considerados seus funcionários. Com isso, o tribunal praticamente encerra uma disputa que poderia ter consequências sérias para as empresas.
Caso o vínculo empregatício tivesse sido reconhecido, as companhias teriam que arcar com todos os custos trabalhistas de todos os motoristas, como FGTS, férias, descanso semanal remunerado, entre outros. Em alguns tribunais trabalhistas, a Uber havia sido condenada a reconhecer o vínculo. Agora, com o acórdão do STJ, essas decisões terão que ser revistas. O tribunal decidiu ainda que qualquer disputa judicial entre motoristas e a Uber deve ser resolvida no âmbito da justiça cível – e não da trabalhista.

☻Mega Opinião
Se você trabalha em um local que há regras a cumprir e é submetido a algum controle de qualidade, há sim subordinação, portanto algum vínculo existe.

14.093 – Audiotecnologia – Como Funciona um Alto Falante


alto falantes 1
Graças aos nossos ouvidos conseguimos ouvir sons produzidos por diversos dispositivos como buzinas, campainhas, bumbos, alto-falantes, etc. Os alto-falantes hoje estão em diversos aparelhos eletrônicos, sendo muito utilizados para incrementar carros de sons, como mostra a figura acima.
Podemos simplificar a definição de alto-falantes como sendo componentes que transformam sinais elétricos de uma corrente elétrica em oscilações de pressão no ar, em forma de onda sonora. Caso observemos bem de perto um alto-falante, poderemos verificar que seus componentes básicos são um ímã permanente, preso na armação do alto-falante, e uma bobina móvel, que está fixa no cone de papel.
Quando aplicamos uma corrente elétrica variável na bobina, esta é repelida ou atraída pelo campo magnético do ímã permanente. Desta forma, o conjunto bobina-cone é movido para frente e para trás, empurrando o ar em sua volta, criando uma onda de compressão e rarefação no ar, ou seja, uma onda sonora.
Por exemplo, aplicando uma corrente oscilante de 440 Hz na bobina, o cone do alto-falante vai se mover para frente e para trás com esta mesma frequência, produzindo uma onda sonora de 440 Hz.
A bobina, presa ao cone, é movida para frente e para trás por meio da força magnética, quando ela é percorrida por uma corrente elétrica.

14.089 – Mega Byte – ‘Novo’ nome do WhatsApp começa a aparecer para os usuários


golpe whats3
Algumas semanas atrás, o Facebook oficializou uma pequena mudança de nome do WhatsApp e do Instagram: eles passariam a se identificar como pertencentes ao Facebook; Agora, a modificação está ocorrendo e um dos aplicativos mais utilizados do mundo já tem o sobrenome da rede social.
A mudança não é tão radical, mas foi feita para que o Facebook pudesse se reafirmar como dono desses aplicativos. O Facebook quer que as coisas sejam claras para todos. Com isso, o aplicativo de troca de mensagens passa a se chamar “WhatsApp do Facebook”.
Isso já pode ser visto na tela de configurações da nova versão beta do aplicativo. Ainda não se sabe se o nome exibido abaixo do ícone na tela do aparelho também mudará, mas pode ser que aconteça no futuro.
A pequena alteração de nome não muda em absolutamente nada o funcionamento do aplicativo: o seu “WhatsApp do Facebook” é exatamente o mesmo app que antes você conhecia apenas como “WhatsApp”.

14.088 – ☻Mega Projeções – Poderá a inteligência artificial superar a humana?


robo IA
Segundo um estudo com opiniões de 352 cientistas e especialistas, daqui a 45 anos há 50% de probabilidade das tarefas ocupadas por humanos conseguirem ser superadas por máquinas inteligentes.
A Inteligência Artificial (IA) está presente em coisas tão quotidianas como o telemóvel, o computador ou o GPS. Até as próprias plataformas de redes sociais já têm mecanismos para filtram informação.

O estudo When Will Artificial Intelligence Exceed Human Performance? levado a cabo por investigadores da Universidade de Yale (EUA) e da Universidade de Oxford (Reino Unido), recolheu opiniões de 352 cientistas e especialistas que acreditam que daqui a 45 anos há 50% de probabilidade das tarefas ocupadas por humanos conseguirem ser superadas por um sistema de inteligência artificial. O relatório indica que a IA está a progredir a uma velocidade nunca antes vista e que pode mudar completamente a sociedade como a conhecemos, desde saúde a transportes, passando pela economia e ciência.
As questões feitas pelos investigadores foram realizadas com o objetivo de determinar, numa linha temporal, a superação de tarefas típicas do ser humano por máquinas. Dentro de algumas décadas, é provável que a IA permita dominar trabalhos e procedimentos cada vez mais complexos, como cirurgias ou até a escrita de best sellers. A definição Máquinas de Alto Nível de Inteligência – máquinas que conseguem completar tarefas de forma mais eficaz e econômicas do que o ser humano – serviu de base para as considerações dos inquiridos.

As conclusões foram significativas. Segundo os resultados, metade aponta como provável que dentro de 45 anos atividades humanas vão conseguir ser superadas por sistemas de IA, sendo que em cerca de 10% das probabilidades a data reduz mesmo para nove anos. Em relação à automatização total do trabalho, os horizontes são mais longínquos: há 50% de probabilidades que aconteça daqui a 122 anos e 10% de chances de acontecer em menos de 20 anos.

Previsões de datas onde o desempenho humano poderá ser ultrapassado pelas máquinas
2024
Transcrever um discurso
2026
Realizar trabalhos escolares (Ensino Secundário)
2027
Conduzir um camião
2031
Trabalhar como um vendedor de comércio a retalho
2049
Escrever um best seller do The New York Times
2053
Trabalhar como um cirurgião
2138
Automatização total do trabalho
Em 2016, um romance criado por um programa de IA passou a primeira fase de seleção para Premio Nacional de Literatura Japonês. O Dia Em Que Um Computador Escreve Um Romance não foi o vencedor, mas mostrou um desenvolvimento significativo.

Noel Sharkey, um especialista em robótica da Universidade de Sheffield, no Reino Unido, mostra algum ceticismo. “Resultados de estudos sobre o futuro podem ser úteis dentro de um intervalo de cinco a dez anos: isso é um futuro previsível”, explica à BBC. “Uma vez que vamos mais longe que isso, é pura especulação”.

O especialista vê como inevitável a superação das máquinas sobre os humanos em vários campos, mas não acredita que a inteligência artificial possa sequer ser comparada à humana. “Não sei se alguma vez [uma máquina] será capaz de se levantar de manhã e perceber se o meu cão precisa de ir à rua ou tomar decisões humanas significativas”, esclarece.

Os alertas de Stephen Hawking quando vivo
Já não é a primeira vez que o famoso físico britânico se se manifestava sobre esta questão. Segundo Stephen Hawking, a criação de máquinas inteligentes pode constituir uma ameaça à sobrevivência da espécie humana. Até agora, a inteligência artificial tem-se revelado útil em vários campos, mas a longo prazo “tornar-se-ia independente e redesenhar-se-ia a uma velocidade ainda maior”, disse nos finais de 2014, à BBC. “Os humanos, que estão limitados pela sua evolução biológica, não podem competir [com a inteligência artificial] e seriam ultrapassados”, acrescentou.

“O risco com a IA não é a malícia, mas a competência”, afirmou ainda o físico numa entrevista ao The Times. “Uma IA super-inteligente será extremamente boa a atingir os seus objetivos e se estes não estiverem alinhados com os nossos, teremos problemas”. Apesar da conjuntura, o físico mantém-se otimista, pois acredita que a espécie humana estará à altura dos seus desafios.
Mesmo Elon Musk, conhecido pelas suas inclinações futuristas, pensa que alcançar “uma simbiose entre inteligência humana e a máquina” que permita evitar que a raça humana se torne irrelevante. As declarações foram feitas a fevereiro deste ano no World Government Summit, no Dubai.
Fonte: O Observador

14.075 -Robótica – Pesquisadores criam pele para robôs que pode regenerar seus circuitos sozinha


regeneracão robotica
Pesquisadores da Universidade de Carnegie Mellon, nos Estados Unidos, podem ter encontrado uma solução para tornar os robôs mais resistentes. Trata-se de uma pele artificial feita de material híbrido e que pode se regenerar sozinha, permitindo a reconexão automática de circuitos. A expectativa é que a solução torne o reparo das máquinas mais barato, combatendo falhas elétricas comuns.
De acordo com a publicação da PhysicsWorld, a solução proposta pelos pesquisadores envolve um tipo de polímero. No entanto, para que o material se torne flexível e resistente a danos, são inseridas micro gotas de uma liga metálica à base de gálio-índio em uma casca macia e elástica. Com isso, cria-se um material híbrido “sólido-líquido” com propriedades macias, eletricamente isolantes e que pode se regenerar diversas vezes.
A “mágica” da solução proposta é a seguinte: quando há um dano no material desta pele robótica, as gotículas de metal presentes no material se rompem para formar novas conexões e redirecionar os sinais elétricos sem interrupção. Assim, as máquinas conseguem continuar as suas operações. De acordo com o chefe da pesquisa, Carmel Majidi, a inspiração para a técnica vem do sistema nervoso humano e sua capacidade de autorregeneração.
Embora o uso de materiais que se “curam” não seja uma novidade na indústria, há uma diferença importante em relação ao proposto pelos cientistas da universidade americana. A maior parte dos compostos atuais demandam exposição ao calor, aumento de umidade ou remontagem manual para que a recuperação ocorra. Já o composto híbrido pode fazer tudo automaticamente, reduzindo custos.

Além do uso em robôs, a equipe da Universidade de Carnegie Mellon acredita que o material também pode ser útil em computadores portáteis e dispositivos vestíveis. A tecnologia também pode ajudar a tornar realidade smartphones flexíveis, tão especulados para os próximos anos, uma vez que sua capacidade regenerativa pode ser usada para recuperar os circuitos internos dos aparelhos.
Apesar dessas características, ainda há espaço para avanços, especialmente no que diz respeito à danos estruturais e mecânicos. Segundo a equipe de pesquisadores norte-americano, o foco agora é desenvolver um material igualmente macio e flexível, mas que pode se regenerar de defeitos físicos.

14.074 – Carro voador japonês faz voo de um minuto em teste


carro voador japones

A corrida para tornar o carro voador realidade está a todo vapor. No Japão, a Nec Corp realizou nesta segunda-feira (5) um teste para seu protótipo. Dentro de uma grande gaiola de segurança, o veículo levantou a 3 metros de altura e ficou voando por cerca de um minuto.
Parecendo mais um drone gigante, o modelo utiliza 4 hélices movidas à energia elétrica. De acordo com a Associated Press, o governo japonês está incentivando o desenvolvimento de carros voadores para que virem realidade até 2030.
Por enquanto, o objetivo é que o veículo seja utilizado em entregas no futuro e sem a necessidade de um piloto.
Além da Nec, empresas como Boeing, Pal-V e Uber estão trabalhando em seus conceitos voadores. Em outra frente, companhias também desenvolvem motos voadoras, inclusive, até a polícia de Dubai está utilizando um protótipo do tipo.

Testes em Fukushima
Entre as bases que o governo japonês está criando para incentivar os carros voadores está uma área de testes em Fukushima. A ideia é utilizar a região devastada pelos desastre nuclear como local de voo para estes veículos.

Há mais projetos em desenvolvimento

 

audi-airbus-afp

web-hero-bell-nexus-image-3
Notícias de carros voadores estão se tornando mais frequentes a cada dia. Essa corrida para ver quem domina primeiro esta tecnologia, e a coloca no mercado, envolve gigantes como Boeing, Airbus e Uber, mas também tem projetos nas mãos de várias startups pelo mundo.
Alguns se parecem mais com um carro de verdade, enquanto outros utilizam tecnologia mais similar a de drones. Outra corrida em potencial é a da moto voadora, nesse caso, com veículos mais compactos.

Airbus
Feito em parceria com a Audi, o conceito de carro voador da Airbus foi apresentado no Salão de Genebra de 2018. Com uma cabine de capacidade para dois passageiros, o habitáculo pode ser acoplado tanto a uma base sobre rodas como a um módulo de voo.
O módulo de voo tem 4,40 metros de comprimento, e é movido por 8 motores elétricos, que totalizam 217 cavalos. A autonomia é de 50 km.

O Holandês Voador
A holandesa Pal-V promete para 2020 colocar a venda seu carro voador. Ele tem uma autonomia de até 500 km no ar e possui hélices que o transformam em uma espécia de helicóptero. Chamado de Liberty Pioneer, ele pode levar 2 pessoas e até 20 kg de bagagem.

holandes voador

14.073 – Inaugurada 1ª etapa de usina solar flutuante em reservatório da Bahia


usina solar3
Foi inaugurada a primeira etapa da usina solar flutuante instalada no Reservatório de Sobradinho, na Bahia.
De acordo com a Companhia Hidroelétrica do São Francisco (Chesf), a plataforma solar flutuante tem uma potência de geração de 1MWp (Mega Watt pico), e até 2020 deverá ter, ao todo, 2,5 MWP.
O valor do investimento nas duas plantas solares da plataforma totaliza R$ 56 milhões. Este é o maior projeto de pesquisa e desenvolvimento desse tipo de energia flutuante no país, em reservatório de hidrelétrica.
Com 3.792 módulos de placas solares e área total de 11 mil m², o projeto instalado no Reservatório de Sobradinho (BA) é fixado ao fundo do lago por cabos, com material próprio para suportar o peso das placas e dos trabalhadores que atuam na construção e manutenção.
De acordo com a Chesf, esse é primeiro estudo sobre a instalação de usina solar flutuante em lagos de hidrelétricas, que aproveita a água dos reservatórios e evita desapropriação de terras. Além disso, esse tipo de usina permite aproveitar as mesmas subestações e linhas de transmissão que escoam a energia produzida pela hidrelétrica.
O projeto tem o objetivo de comparar a eficiência de projetos solares implantados em terra e em água.
Além disso, a pesquisa analisará o grau de eficiência da interação de uma usina solar em conjunto com a operação de usinas hidrelétricas. O foco será em fatores como a radiação solar que incide no local, produção e transporte de energia, instalação e fixação no fundo dos reservatórios, a complementariedade da energia gerada e o escoamento desta energia.
Os resultados dos projetos vão permitir avaliar a eficácia da produção média de energia solar nesses locais.
A região Nordeste apresenta altos índices solarimétricos (intensidade da radiação solar) e, por isso, é considerada área com grande potencial para aproveitamento de geração solar.
Os estudos ambientais também serão contemplados na pesquisa, focando o efeito da planta fotovoltaica sobre a água do rio, além dos impactos na biota aquática.

14.067 – Medicina – Estão Chegando os Órgãos Artificiais


orgaos artificias
De acordo com o Ministério da Saúde, só no Brasil, são mais de 40 mil pessoas na fila de espera para um transplante de órgão. Apesar de salvar vidas, muitas pessoas ainda se recusam a doar órgãos. A taxa de rejeição a doação em nosso país é de 43%, enquanto que a média mundial é de 25%.
São números bastante significativos e que custam a vida de muitas pessoas todos os anos. No primeiro trimestre de 2018, 664 pessoas morreram na fila de espera pela doação de um órgão que fosse compatível. Por isso, sem dúvida alguma, os órgãos artificiais têm uma grande importância para a medicina e ajudará a salvar milhares de vidas.
O primeiro transplante da história foi realizado entre gêmeos. Um transplante de rim realizado em 1954 pelo médico Joseph Murray foi um grande sucesso e um marco na história da medicina. Isso foi realizado com o objetivo de evitar a rejeição dos órgãos, mas, de lá para cá, muita coisa mudou.
Hoje, existem medicamentos imunossupressores que são capazes de evitar essa rejeição e, assim, aumentar o sucesso do transplante.
Há, basicamente, dois tipos de transplante: o autólogo e o alogênico. No primeiro caso, o órgão ou tecido é retirado da própria pessoa e implantado em outra parte do corpo. Já no segundo caso, o receptor recebe uma parte do corpo de outra pessoa, conhecida como doadora.
O grande problema do transplante é a questão da compatibilidade entre os indivíduos. Quando o órgão implantado não é compatível com o corpo, os anticorpos começam a atacar, destruindo o que consideram um “agente invasor”. O paciente acaba indo a óbito.
Nesse aspecto, o uso dos órgãos artificiais seria um grande avanço nas cirurgias de transplantes, evitando essa incompatibilidade.
A ideia é que, até 2021, os órgãos artificiais sejam bastante populares. Quando algum órgão do corpo humano entrar em falência, como o pâncreas — que pode reduzir drasticamente ou mesmo parar a produção de insulina –, possa ser rapidamente substituído por um órgão artificial. Este, por sua vez, conseguirá exercer todas as funções do órgão original.
Os órgãos artificiais já estão sendo produzidos em laboratório com a ajuda de uma impressora 3D e de outros diversos equipamentos. Um excelente exemplo é o de um coração artificial que já está sendo criado e também um pâncreas. Eles já foram, inclusive, aprovados pelo órgão institucional que cuida dos alimentos e medicamentos nos Estados Unidos, a FDA (Food and Drug Administration).
São inovações que levam esperanças para milhares de pessoas. Por exemplo, um pâncreas artificial pode representar a cura para o diabetes, uma doença que atinge mais de 14 milhões de brasileiros, sendo que muitos ainda não sabem que são portadores da doença.
Atualmente, no Brasil, a tecnologia já permite que tecidos mais simples sejam fabricados em laboratório: valvas cardíacas, vasos sanguíneos, pele, ossos e outros tecidos de baixa complexidade. Para que o órgão artificial possa substituir o de origem, são usadas as biomoléculas (fragmentos de células-tronco), que são fatores de crescimento e, assim, conseguem aumentar a produção de células nesse órgão.
Depois de algum tempo, em um ambiente propício, as células começam a ocupar o lugar do polímero, dando uma estrutura biológica ao órgão em questão. Ocorrerá uma diferenciação específica e as células passam a apresentar as características de uma determinada parte do corpo. Tudo isso graças aos avanços em estudos com as células-tronco e ao seu poder de diferenciação e regeneração de tecidos.
A grande dificuldade na criação dos órgãos artificiais é justamente a elevada complexidade de alguns deles. Por exemplo, no coração, encontramos diversos tipos de tecidos. É também um órgão repleto de cavidades e com uma rica rede de vascularização.
Uma das formas encontradas de tentar driblar esse bloqueio foi o uso da impressão em 3D, ou melhor dizendo, o uso da bioimpressão. Ela funciona de forma bem simples: uma substância chamada de hidrogel, rica em células e biomoléculas, é colocada, na impressora que consegue imprimir o órgão exatamente da forma desejada. Por exemplo, pode-se usar um exame de imagem 3D para replicar, com exatidão, o coração de um indivíduo.

Quais são os principais tecidos desenvolvidos?
Muitos órgãos e diversas partes do corpo estão sendo transformados em órgãos artificiais. Veja abaixo quais são os principais e que estão em processo de criação:

Pele
Há um tempo considerável os pesquisadores já estão trabalhando na criação da pele humana em laboratório. Células humanas são cultivadas e então são introduzidas em uma estrutura feita de colágeno. Com essa técnica, é possível produzir até 5 mil lâminas de tecido epitelial por mês.

Vasos sanguíneos
A criação de novos vasos sanguíneos artificiais pode ser a esperança para o tratamento de problemas diabéticos, renais e cardíacos. Muitos testes já estão sendo realizados com a utilização das células dos próprios pacientes.

Fígado
A espera por esse órgão costuma formar uma longa fila. Diversas doenças como a hepatite tendem a destruir o fígado e, assim, esse órgão precisa ser rapidamente substituído.
É um dos mais complexos e, consequentemente, o que os cientistas sentem maior dificuldade em reproduzir, sem contar o seu tamanho. Mas algumas miniaturas já foram criadas e o transplante em ratos tem dado resultados muito positivos.

Bexiga
A bexiga é um dos órgãos artificiais que já estão sendo testados em humanos e vem apresentando um resultado bastante positivo. A bexiga artificial é produzida a partir de células dos próprios pacientes e levam cerca de 2 meses para serem produzidos.

Traqueia
A traqueia é outro órgão artificial que já está sendo testado em seres humanos. Uma menina nos EUA recebeu uma traqueia artificial fabricada a partir de suas próprias células. Ela nasceu sem o órgão e sem a réplica artificial só sobreviveria com a ajuda de aparelhos.

Coração
Por ser um órgão bastante complexo, nenhum dos corações artificiais já produzidos foram capazes de substituir com maestria o órgão original. Atualmente, estão sendo realizados testes em ratos com um coração feito a partir de tecido animal. Alguns pesquisadores estimam que um coração artificial funcional conseguirá ser produzido até 2030.

Orelha
Uma orelha artificial já foi produzida em laboratório com a utilização de células e cartilagem produzida em laboratório. Ficou conhecida como orelha biônica, pois consegue captar outras frequências que os ouvidos humanos não são capazes de ouvir.

O pesquisador do Instituto de Medicina Regenerativa da Universidade Wake Forest, nos Estados Unidos, Anthony Atala, deu uma das palestras de maior repercussão da edição de 2011 do TED — conferência anual na Califórnia que reúne pensadores para apresentar suas melhores ideias em palestras de 15 minutos. No palco, Atala segurou nas mãos o molde de um rim impresso no dia anterior. O processo levou sete horas e usou células humanas e materiais biológicos que são inseridos no cartucho de uma impressora 3D. Em casos assim, o paciente teria o corpo escaneado para que se identificasse o formato exato do órgão a ser reproduzido. Ainda em desenvolvimento — por enquanto é possível imprimir apenas a carcaça do órgão, mas não sua parte interna —, o método sinaliza o início de uma espécie de revolução industrial dos transplantes. Uma era em que pode ser possível produzir órgãos em larga escala e até sob encomenda. “Queremos resolver o problema das longas filas de espera pelos transplantes”, afirmou Atala em entrevista à galileu. No Brasil, elas duram, em média, quatro anos. E 70% das cirurgias são para ganhar um novo rim.

As tecnologias emergentes que mais apontam para a produção em massa de órgãos e tecidos a partir de materiais biológicos são novíssimas impressoras 3D. Usando células do próprio paciente em vez de tinta, espera-se que a precisão robótica destas máquinas imprima estruturas de órgãos para transplantes. No ano passado, a start-up de biotecnologia norte-americana Organovo lançou a primeira máquina comercial para imprimir tecido humano. Fabricada para pesquisas desenvolvidas em laboratórios universitários, custa cerca de US$ 250 mil e produz vasos sanguíneos. A máquina já imprimiu estruturas de órgãos implantados em animais. “Chegaremos ao ponto de fabricar órgãos prontos para serem transplantados em pessoas”, afirmou à galileu o cientista húngaro Gabor Forgacs, um dos fundadores da Organovo e inventor do protótipo da impressora.

 DAS MÃOS ÀS MÁQUINAS

Anthony Atala é um pioneiro da fabricação de órgãos. Quatro dias após sua palestra no TED, ele, que é urologista pediátrico, publicou em um dos mais importantes periódicos científicos do mundo, The Lancet, o resultado de um estudo que acompanhou cinco mexicanos de 10 a 14 anos após receberem, em 2004, transplante de uretras criadas em seu laboratório. Os órgãos funcionaram normalmente ao longo dos seis anos de monitoramento. Em 1998, sua equipe já havia criado e implantado bexigas em nove crianças, tornando-se a primeira a transplantar em pessoas órgãos feitos em laboratório.

Atualmente, Atala e sua equipe desenvolvem e testam mais de 30 tipos de tecidos e órgãos, entre eles pele, rins, pâncreas, fígado e válvulas cardíacas. O cientista leva cerca de seis semanas para fabricar um órgão oco e relativamente simples como uma bexiga. O processo começa com a coleta de um pedaço de tecido, menor que a metade de um selo postal, da bexiga do paciente. Depois, as células são cultivadas em laboratório e colocadas dentro e fora de uma carcaça feita à base de colágeno. Assim, elas se espalham e se organizam por conta própria. Na última etapa, o órgão “semeado” é colocado em uma espécie de forno que simula as condições de um corpo humano, com 370 C de temperatura e 95% de oxigênio. Por utilizar células do paciente, o procedimento diminui muito as chances de rejeição.

Em outubro do ano passado, pesquisadores do mesmo instituto desenvolveram uma miniatura funcional de um fígado humano. Os cientistas retiraram o órgão de um animal morto. O fígado foi lavado com um detergente neutro para remover todas as células, deixando apenas o esqueleto de colágeno do órgão original. Feito isso, células humanas foram inseridas no suporte natural. Após uma semana dentro de uma máquina bombeada por nutrientes e oxigênio, o tecido de fígado humano começou a ser formado. Até agora, órgãos produzidos por este processo não foram colocados em pessoas. Mas é assim que Atala pretende fazer o primeiro transplante de rim de laboratório. O método também pode reutilizar órgãos humanos.

 PEÇA COM ANTECEDÊNCIA

Além da redução das filas para transplantes, a produção de órgãos em escala traria a diminuição de custos. Um procedimento como o dos garotos que receberam as uretras criadas no laboratório de Atala sai por cerca de US$ 5 mil (e não está disponível para o público). “O interesse comercial nestas tecnologias deve estimular sua industrialização e reduzir preços”, diz Atala. Ainda assim, a fabricação não será instantânea. O ideal, então, poderá ser a encomenda antecipada. “Se sua família tiver um histórico de problemas cardíacos, poderemos produzir vasos sanguíneos e guardá-los para o dia em que você precisar deles”, diz Forgacs, da Organovo. Com fabricação em massa e sob encomenda, você poderá comprar uma bexiga ou fígado novo quando os seus falharem. Quem sabe até parcelar no cartão.

orgaos

14.066 – A Cápsula Orion


200px-Orion_Space_launch
(MPCV)) é uma nave espacial desenvolvida pela NASA para exploração humana do espaço profundo, construída para transportar astronautas à Lua, a Marte e a asteróides.
A espaçonave é baseada no antigo Orion Crew Exploration Vehicle, do cancelado Programa Constellation.
O primeiro teste não-tripulado da Orion foi realizado com sucesso em 5 de dezembro de 2014.
Em 14 de janeiro de 2004, o presidente dos Estados Unidos, George W. Bush, anunciou a construção do Crew Exploration Vehicle (CEV) como parte da política espacial americana Vision for Space Exploration. O veículo espacial era parcialmente uma reação ao acidente do ônibus espacial Columbia, ao relatório da comissão criada para analisar as causas do desastre e às descobertas subsequentes, além de uma revisão do programa espacial norte-americano feita pela Casa Branca. Como a Vision for Space Exploration acabou sendo desenvolvida como Programa Constellation, o CEV acabou sendo denominado Orion Crew Exploration Vehicle, em homenagem à constelação do mesmo nome.
O Programa Constellation propunha a criação do Orion CEV com duas variantes, nave cargueira não-tripulada e voos com tripulação, como apoio às expedições na Estação Espacial Internacional e como um transporte para voltar à Lua. Dividida em duas partes principais, um módulo de comando em forma de cone e um módulo de serviço cilíndrico – contendo o sistema de propulsão da nave e suprimentos de consumo – foram projetados, baseados no desenho das naves Apollo que voaram entre 1967 e 1975.
O desenho da nave incluía um módulo de serviço para suporte à vida e propulsão própria, inicialmente previsto para aterrar em terra firme com o auxílio de airbags, mas depois mudado para pouso no mar, também como as antigas Apollo.
A nave deveria ser lançada por um foguete leve Ares I para a órbita baixa da Terra onde se acoplaria com o Módulo Lunar Altair, lançado antes por um foguete mais pesado, Ares V, para as expedições lunares. Entretanto, em 11 de outubro de 2010, por questões orçamentárias, o presidente Barack Obama cancelou o Programa Constellation, encerrando o desenvolvimento do módulo Altair e dos dois foguetes programados. Apenas o Orion Crew Exploration Vehicle (CEV), renomeado como Orion Multi-Purpose Crew Vehicle (MPCV), foi mantido, com lançamento a ser feito pelo Space Launch System.
A Orion MPCV se assemelha em aparência com suas predecessoras Apollo mas a similaridade é limitada ao desenho de ambas. Sua tecnologia e capacidade são muito mais avançadas. Ela é planejada para suportar missões de maior duração no espaço profundo e pode carregar até seis astronautas por mais de 21 dias e até 6 meses. Durante o período de repouso no espaço, o suporte à vida da tripulação deve ser fornecido por outro módulo como o Deep Space Habitat, um módulo em tamanho menor e derivado das condições de conforto da ISS. A propulsão, proteção termal e sistemas aviônicos foram planejados para serem modernizados à medida que novas tecnologias sejam descobertas. Ela inclui módulo de comando e de serviço assim como um adaptador de espaçonaves.
O módulo destinado à tripulação é maior que o da Apollo e pode acomodar mais tripulantes para missões espaciais curtas ou longas. O módulo de serviço, além de fornecer propulsão, estoca a água e o oxigênio da tripulação. Sua estrutura também foi desenhada para permitir o transporte de carga e de experimentos científicos.

Módulo de Comando
É a cápsula que serve de habitação para os tripulantes, fornece armazenamento para materiais de consumo e instrumentos de pesquisa e serve como porto de acoplagem para transferência de tripulações. É a única parte da espaçonave que retorna à Terra após a missão e tem um formato de tronco de bases paralelas a 57.5º, similar ao Módulo de Comando da Apollo. Tem 5m de diâmetro por 3,3m de altura, com uma massa de cerca de 8,6 toneladas.
A proteção termal da cápsula é feita de um produto chamado Avcoat, também usado anteriormente nas Apollo e nos ônibus espaciais, composto de fibras de sílica com uma resina em um favo feito de fibra de vidro e resina fenólica. Algumas das novas tecnologias usadas pela Orion são um sistema de acoplagem automática (existente apenas hoje nas naves cargueiras não-tripuladas), sistema de computadores superiores aos existentes em qualquer espaçonave atual, sistemas digitais de controle derivados do Boeing 787 Dreamliner, o mais avançado avião da Boeing, incluindo controle de voz, melhoria das instalações de gestão de resíduos, com um banheiro de estilo acampamento em miniatura e o “tubo de alívio” unissex usado no ônibus espacial (cujo sistema foi baseado no utilizado no Skylab) e da Estação Espacial Internacional (com base nas estações soviéticas Salyut e MIR). Isso elimina o uso da odiada “fralda de plástico” usada pelos tripulantes das Apollo e das naves russas Soyuz. Além disso, um novo sistema de mistura de oxigênio/nitrogênio é usado na composição da atmosfera do interior da nave, que permite que o ar respirado tenha mesma pressão do nível do mar ou ligeiramente reduzido.
A cápsula é construída com uma liga de alumínio-lítio, igual à usada no tanque externo do ônibus espacial e nos foguetes Delta IV e Atlas V.
Para permitir que ela acople com outras naves espaciais, o MC da Orion é equipado com o NASA Docking System, mecanismo de acoplagem desenvolvido para ela, similar ao usados pelos ônibus espaciais para acoplagem com a ISS. Ela também possui um sistema de escape de emergência durante o lançamento, o Launch Escape System, assim como uma capa protetora feita de fiberglass para protegê-la de tensões aerodinâmicas e de impacto durante os 2,5 minutos de subida. Seus projetistas asseguram que a Orion é dez vezes mais segura durante a subida e a reentrada que os ônibus espaciais.

Módulo de serviço
Num primeiro momento, após indecisões sobre a fabricação de um MS por questões orçamentárias após o fim do Programa Constellation, a direção da NASA e do programa Orion anunciou que a ela usaria um já existente ATV, os veículos de carga europeus desenvolvidos pela ESA para suporte das tripulações da Estação Espacial Internacional, como módulo de serviço para o módulo de comando da Orion. Com a evolução dos estudos, a NASA decidiu que um módulo exclusivo seria construído pela ESA para a nave, com hardware derivado dos atuais ATV, através da Airbus Defence and Space, em Bremen, na Alemanha.

Sistema de abortagem de lançamento
A Orion é a primeira espaçonave norte-americana desde o Programa Apollo a ser equipada com um sistema de escape de emergência. Assim como o módulo de comando da Apollo, o Launch Escape System (LES) da Orion possui um potente foguete de combustível sólido na ponta do conjunto foguete-cápsula, capaz de ejetar o módulo de comando e sua tripulação para longe do foguete se ele apresentar algum defeito durante o lançamento inicial, até o momento em que o primeiro estágio seja ejetado.
Baseado no sistema usado pelas naves Soyuz, o LES a ser usado pela Orion será maior que os da espaçonave russa e terá mais empuxo que todo o foguete Atlas 6 usado para colocar o astronauta John Glenn em órbita em 1962.
Após o adiamento para o dia seguinte, em 5 de dezembro foi feito o lançamento da espaçonave, às 07:03, hora local de Cabo Kennedy, sem tripulação, para o teste que consistiu em realizar duas órbitas em volta da Terra, uma delas a mais de 5,8 mil km de distância, dentro do Cinturão de Van Allen, testar equipamento críticos de segurança, fazer análises das estruturas da nave e retornar pousando no oceano.[24] Apesar de não levar tripulantes, a Orion levou ao espaço amostras do solo lunar, partes de um fóssil de dinossauro e uma gravação do movimento “Marte” da obra de Gustav Holst, “Os Planetas”.
Depois de cumprir o planejado, num voo de cerca de 4h30min, a cápsula pousou no Oceano Pacífico, 1000 km a oeste de San Diego, às 08:29, hora local, onde foi recolhida do oceano pelas equipes de resgate da NASA e da Marinha, a bordo do navio de apoio USS Anchorage. A agência espacial informou que a nave funcionou quase à perfeição e que pousou no mar apenas uma milha fora do ponto previsto.

14.057 – Como Funciona o Trem Bala?


trem bala ima
Eles conseguem fazer isso graças a poderosos eletroímãs – peças que geram um campo magnético a partir de uma corrente elétrica – instalados tanto no veículo quanto nos trilhos. Os maglevs (abreviação de “levitação magnética”), como são chamados, nada têm a ver com os famosos trens-bala que circulam no Japão e na Europa com motores elétricos e rodas comuns e atingem até 300 km/h. Já os maglevs, que ainda não entraram em operação em nenhum lugar do mundo, poderão superar os 500 km/h, pois não sofrerão nenhum atrito com o solo. As vantagens não param por aí. Eles consumirão menos energia, serão mais silenciosos e não precisarão de tanta manutenção. A expectativa é de que esses trens flutuantes possam competir até com vôos regionais, revolucionando o transporte entre cidades.
Um maglev venceria a distância entre Rio e São Paulo em 50 minutos, praticamente o mesmo tempo da ponte aérea, mas a um custo bem inferior. Por que, então, eles ainda não estão em funcionamento? O problema é o enorme investimento necessário para instalar linhas totalmente novas – enquanto os trens-bala comuns podem aproveitar as ferrovias já existentes.
Transporte revolucionário O trem alemão Transrapid levita a 10 milímetros de altura
CABINE DE COMANDO
Apesar de ter, na frente, uma cabine de comando tripulada, como os trens tradicionais, o maglev não possui uma locomotiva propriamente dita, já que o “motor” não fica no trem e sim nos trilhos inteiros. Cada vagão tem seus próprios ímãs e é capaz de levitar sozinho

TRILHOS MAGNÉTICOS
O verdadeiro motor do maglev está na linha que ele irá percorrer. Uma bobina de cabos ao longo dos trilhos produz um campo magnético variável que impulsiona o trem a velocidades de até 500 km/h. Para economizar energia, apenas a parte da linha sobre a qual o trem está passando permanece ligada

CHASSI INFERIOR
Essa estrutura embaixo dos vagões carrega os ímãs responsáveis pela levitação e pela direção do veículo. Apesar de envolver as guias da linha (para evitar descarrilamento), o chassi não toca nelas e fica suspenso no ar, a 10 milímetros de distância

ÍMÃS DE DIREÇÃO
Quatro eletroímãs, dois de cada lado do trem, são atraídos para a guia. O resultado é um equilíbrio de forças (seta amarela) que impede o trem de tocar nos trilhos. Nas curvas, a potência dos ímãs é automaticamente ajustada por computadores para que o trem vire suavemente, sem solavancos

ÍMÃS DE LEVITAÇÃO
Ficam embaixo dos trilhos e apontados para cima, sustentando o trem no ar com sua força magnética (seta verde). São eles que impulsionam o trem para a frente, reagindo às variações na corrente elétrica que passa pela linha

BOBINA DE CABOS
A bobina é formada por três cabos elétricos trançados que percorrem todo o trilho. A diferença de corrente elétrica entre eles gera o campo magnético que faz o trem avançar (seta vermelha). Para freá-lo, basta inverter a direção desse campo

maglev-track

 

tecnicaslev

Maglev_imas sistemas