14.043 – Supernova – A Morte Brilhante das Estrelas


supernova
Supernovas são objetos celestes pontuais com luz extremamente intensa e com duração de apenas alguns meses. Da antiguidade, há poucos registros desses objetos, que desafiavam a compreensão de seus observadores. Na Europa dominada pelo aristotelismo, nenhum astrônomo lhes deu maior atenção. Pois segundo Aristóteles, o céu era imutável, do que se deduzia que tanto cometas como supernovas eram fenômenos atmosféricos. Como mostraremos mais adiante, as supernovas são explosões de estrelas de grande massa que exauriram suas fontes convencionais de energia.

A luminosidade de uma supernova (SN) é gigantesca. Em seu pico, que ocorre poucas semanas após o seu aparecimento, a luminosidade pode atingir valores de dez bilhões de sóis e a SN pode competir em luminosidade com toda a galáxia em que se situa. A figura 1 mostra a foto da SN 1994D que explodiu nas bordas da galáxia espiral NGC 4526 situada à distância de 108 milhões de anos-luz. Uma supernova expele até cerca de 90% da sua massa para o espaço, e séculos depois essa massa de gás pode ser vista como uma nebulosa em forma esférica ou de anel. A figura 2 mostra os gases formados por uma supernova que Kepler notou pela primeira vez dia 17/10/1604. Esta foi a última supernova inquestionavelmente observada na Via Láctea. Ocorreu a 20 mil anos luz de distância e pôde ser vista durante o dia por 3 semanas. Mas exames recentes de restos de SN indicam que em nossa galáxia ocorre em média uma supernova a cada 50 anos, ou seja, a cada 1,5 bilhões de segundos. Como o universo visível tem cerca de mil bilhões de galáxias, a cada segundo nele explodem centenas de SN. Mas mesmo com o atual sistema de monitoramento por meio de poderosos telescópios, a grande maioria delas passa despercebida.
Os primeiros estudos teóricos sobre supernovas foram realizados pelo físico suíço Fritz Zwicky (1898 – 1974) que desde os 27 anos trabalhou no Instituto Tecnológico da Califórnia. Zwicky, que em 1926 cunhou o termo supernova, teorizou que elas eram geradas por explosões de estrelas anãs brancas (ver anãs brancas no artigo Evolução Estelar). Junto com seu colega Walter Baade, Zwicky também reconheceu dois tipos de supernovas: Tipo I, cujo espectro de emissão não contém raias de absorção por hidrogênio, e Tipo II, que mostram raias de hidrogênio muito alargadas. É fato reconhecido da sociologia da ciência que a aceitação inicial de idéias realmente pioneiras depende consideravelmente da personalidade dos seus proponentes. Ocorre que Zwicky tinha um caráter singularmente arrogante e áspero. Sobre seus colegas de ofício, dizia que eram idiotas esféricos. Esféricos porque pareciam igualmente idiotas, qualquer que fosse o ângulo de visão. Esse não é definitivamente o tipo que faz sucesso facilmente. Ele fez algumas descobertas de grande importância que só foram levadas a sério décadas mais tarde. Em 1933, descobriu a existência da matéria escura, mas foi ignorado até os anos 1970, quando a matéria escura foi redescoberta independentemente. Coisa algo semelhante ocorreu com suas descobertas e idéias pioneiras sobre SN.
Os estudos mais recentes exigiram uma classificação mais detalhada das SN. Há 3 classes de supernovas tipo I, que são Ia, Ib e Ic, e pelo menos 3 classes de SN tipo II. Essa classificação é feita com base no espectro de luz das SN e também na sua curva de luminosidade, ou seja, a maneira como a luminosidade aumenta e, após atingir seu pico, decresce até finalmente tornar-se talvez invisível. Somente as SN tipo Ia são explosões de estrelas anãs brancas. As outras são explosões de estrelas gigantes – com massa maior do que uns 9 sóis – que consomem rapidamente o hidrogênio do seu núcleo, entram em crise energética e explodem sem passar pelo estágio de anãs brancas. Supernovas Tipo Ia podem ser observadas tanto em galáxias elípticas, nas quais há muito não há formação de novas estrelas, quanto nas galáxias espirais. Os outros tipos de supernovas só ocorrem nos braços das galáxias espirais, onde a formação de novas estrelas ainda é freqüente. Isso ocorre porque uma estrela com massa de 10 sóis vive apenas uns 10 milhões de anos antes de explodir como supernova.

Por que anãs brancas podem explodir como supernovas

Como se pode ver no artigo Evolução Estelar, estrelas com massa na faixa aproximada de 1 a 9 sóis, uma vez exaurido o hidrogênio em seus núcleo, passam por um processo no qual se tornam gigantes vermelhas, expelem grande parte da sua massa externa e o núcleo remanescente se transforma em uma anã branca composta principalmente de carbono e oxigênio. Uma anã branca é capaz de se manter estável, evitando seu colapso gravitacional por meio da chamada pressão por degenerescência eletrônica, desde que sua massa seja inferior ao chamado limite de Chandrasekhar, cujo valor é cerca de 1,4 massas solares. Mas uma estrela anã branca pode ganhar massa adicional se for parte de um sistema binário (pelo menos metade das estrelas existentes são binárias) e se a sua companheira também vier a se tornar gigante vermelha. Nesse caso, a anã branca começa a absorver matéria da vizinha agigantada (ver figura 4) até que finalmente atinja o limite de Chandrashekhar. Ao atingir esse limite, ela se colapsa e seu núcleo atinge temperatura de bilhões de graus, o que inicia um processo explosivo de fusão de carbono e oxigênio. Em questão de segundos a SN emite (1-2) x 1044 joules de energia, o que, em ordem de grandeza, equivale ao que o Sol emitirá em toda a sua existência.
Supernovas Tipo Ia são usadas como velas padrão

Vimos que a energia emitida por supernovas Tipo Ia varia por um fator de apenas 2. O mesmo ocorre com sua luminosidade máxima, que ocorre cerca de 2 semanas após a explosão. Pelo exame do espectro da luz emitida pela supernova, os astrônomos aprenderam a reconhecer as que têm maior ou menor luminosidade. Assim, essas supernovas têm sido utilizadas como velas padrão (fontes de intensidade bem estabelecida). A comparação entre a luminosidade aparente e a luminosidade absoluta presumível tem possibilitado medidas de grandes distâncias astronômicas com incerteza de apenas 7%, o que é muito pouco comparado com os métodos tradicionais. Isso tem levado a importantes avanços em cosmologia observacional, que serão discutidos mais adiante.

Os outros tipos de supernovas são explosões de estrelas muito massivas

Estrelas com mais de 9 massas solares podem explodir como supernovas sem passar pelo estágio de anãs brancas. Elas têm uma evolução complexa e relativamente rápida. No início, como todas as estrelas, elas geram energia pela fusão de hidrogênio em hélio em seu núcleo. Quando o hidrogênio no núcleo se exaure, cessa a geração de calor, a pressão para fora gerada pelo núcleo diminui e este se contrai sobre a pressão gravitacional da região externa rica em hidrogênio. Essa compressão aquece o núcleo o bastante para que 3 núcleos de hélio sejam fundidos para formar carbono. Na camada adjacente a esse núcleo superaquecido a temperatura se eleva o bastante para que tenha início a fusão do hidrogênio. Mas essa etapa evolutiva também chega a um fim e a estrela sofre nova compressão. No núcleo, elementos mais pesados começam a ser gerados por fusão, na camada adjacente tem início fusão de hélio para gerar carbono e em uma terceira camada começa a fusão do hidrogênio. As etapas vão se sucedendo até que a estrela adquira uma estrutura tipo cebola como exibida na figura 5.

 

fig5

Figura 5 – Estrutura de cebola de uma estrela muito massiva ao final da sua vida na Sequência Principal.

Em dado momento, o calor gerado pelos processos de fusão não é mais capaz de gerar pressão para fora que suporte a compressão gravitacional. O núcleo central de ferro sofre um colapso com velocidade de até 70.000 km/s. Energia da ordem de 1046 joules é emitida na forma de neutrinos. Cerca de um centésimo da energia desses neutrinos é absorvida pelas camadas externas, o que gera a explosão de supernova. Material é expelido da estrela com velocidades de até 30.000 km/s, no que ela perde cerca de 90% da sua massa. O núcleo remanescente se transforma em uma estrela de nêutrons se a massa da estrela progenitora for menor do que cerca de 20 massas solares. Se for maior do que esse limite estimado, o núcleo se transforma em um buraco negro. Simulações em computador mostram que estrelas com massa maior do que 50 massas solares entram em colapso e convertem-se diretamente em buracos negros sem que haja uma explosão tipo supernova.

Os elementos pesados da tabela periódica são originários de supernovas

Não fossem as supernovas, a vida no universo seria impossível porque a química existente seria excessivamente simples. De fato, no Big Bang só foram produzidos hidrogênio, hélio e uma pitadinha de lítio. Todos os outros elementos são sintetizados em estrelas massivas e em algumas delas jogados no espaço em explosões de supernovas. Mesmo em estrelas com massa maior do que 9 massas solares, que dão origem a supernovas tipos Ib, Ic e II, os processos de fusão nuclear não são capazes de gerar elementos mais pesados do que o ferro. Isso porque a fusão nuclear do ferro com outros elementos consome energia em vez de gerá-la. Mas na explosão de supernovas, qualquer que seja o seu tipo, as ondas de choque do gás em expansão são capazes de suprir a energia suficiente para a síntese de todos os elementos da tabela periódica. Se uma nova estrela se forma em gás enriquecido desses elementos e essa estrela contém um sistema planetário, esses planetas podem apresentar uma química complexa o bastante para que nela se desenvolva a vida. Isso é exatamente o que ocorreu com o nosso Sol e seus planetas. A concentração de elementos pesados no Sol sugere que ele na verdade seja uma estrela de terceira geração. Com isso se quer dizer que ele foi gerado de gás produzido por uma (ou mais de uma) supernova cuja estrela progenitora (ou estrelas progenitoras) foram formadas de restos de supernovas. Eu e você, caro leitor, somos feitos de lixo atômico, somos filhos e netos de uma das maiores calamidades nucleares que se conhece no universo.

14.031 – O que é órbita?


orbitas-terrestres-1276821718-1000x685
É o movimento que um corpo celeste realiza ao redor de outro corpo celeste pela influência de sua gravidade. Logo, a órbita terrestre é o movimento que os satélites, sejam eles naturais – como a lua, ou artificiais, realizam em volta do Planeta Terra.
Existem diferentes tipos de órbitas terrestres. Cada uma delas é utilizada por diferentes propósitos dependendo da distância que se encontram da superfície, da área coberta e do tempo necessário para completar a trajetória orbital.
Órbita geoestacionária
Em uma órbita geoestacionária, também chamada de GEO, os objetos permanecem em uma posição fixa em relação a superfície da Terra. De acordo com a Segunda Lei de Newton, para que um objeto em órbita se mantenha em posição fixa em relação a superfície terrestre, ele deve estar a uma distância fixa de 35.786 km do nível do mar e sob a linha do Equador.

A orbita geoestacionária é muito utilizada por satélites utilizados em sistemas de comunicação. Por ficarem na mesma posição em relação a superfície terrestre, eles conseguem cobrir áreas específicas com regularidade, sem que seja necessário interrupções no serviço ou o reposicionamento de antenas responsáveis por captar suas ondas.
Uma órbita baixa da Terra, também chamada de LEO, são aquelas localizadas abaixo da órbita geoestacionária, podendo estar entre 160 km e 2.000 km de distância do nível do mar. A Estação Espacial Internacional está localizada em uma órbita LEO, bem como a maior parte dos satélites meteorológicos e muitos satélites de comunicação.
Órbita polar
As órbitas polares estão entre as baixas órbitas pois possuem altura entre 200km e 1.000km de distância do nível do mar. A particularidade das órbitas polares é que elas varrem a superfície terrestre de polo a polo, formando um ângulo reto com o Equador. Esse tipo de órbita terrestre é muito utilizado por satélite de observação e imageamento da superfície.

Órbita heliossíncrona
Trata-se de um tipo de órbita localizada entre 600 km e 800 km de distância do nível do mar, que descreve uma órbita polar mantendo-se sempre alinhada à posição do sol. Esse tipo de órbita é utilizado por satélites que necessitam de condições de luz para desempenharem suas funções, como satélites óticos.

Órbita média da Terra
As órbitas médias da Terra, também chamada de MEO, são aquelas localizada acima das órbitas LEO e abaixo da órbita GEO, ou seja, entre 2.000 km e 36.000 km de distância do nível do mar. Essas órbitas são muito utilizadas por satélites de geolocalização e para satélites de comunicação que atendem as regiões próxima ao círculo ártico, onde as ondas dos satélites geoestacionários não conseguem chegar.

Órbita terrestre alta
Uma órbita terrestre alta, também chamada de HEO, são as órbitas localizadas acima da órbita geoestacionária, ou seja, acima de 36.000 km de distância do nível do mar. Nestas órbitas, os satélites levam mais de 24 horas para concluir uma revolução completa. Esse tipo de órbita foi muito utilizado durante a Guerra Fria pelos EUA para vigiar o território Russo por meio do projeto VELA.

Órbitas excêntricas
Todas as órbitas citadas descrevem trajetórias circulares nas quais a centrípeta exercida pela gravidade da Terra é a principal propulsora. Diferente dessas órbitas, a orbita excêntrica descreve uma trajetória elíptica, sendo que nas extremidades mais estreitas sua distância da superfície terrestre varia entre 500 km e 2.000 km e nas extremidades mais distantes pode chegar até 150.000 km. Esse tipo de órbita é utilizada por satélites que precisam se afastar da influência eletromagnética e gravitacional da Terra para coletarem dados espaciais.

14.023 – Como Funciona a Vela Solar?


velasolar
Velas solares são um tipo de propulsão que utiliza pressão de radiação para gerar aceleração. Elas são feitas de grandes espelhos membranosos de pouca massa que ganham momento linear ao refletirem fótons. A pressão de radiação à distância da Terra ao Sol é de aproximadamente 10−5 Pa[1] e é função inversa do quadrado da distância à fonte luminosa, se esta for pontual. Mesmo gerando aceleração de valor muito pequeno, velas solares são capazes de gerar aceleração constante por longos períodos e não requerem massa de reação, que geralmente totaliza uma fração significante da massa das espaçonaves que utilizam-na atualmente, possibilitando assim aumentar a carga útil da espaçonave e atingir grande velocidade. Várias tecnologias foram teorizadas a partir de velas solares de com usos para pequenas alterações de órbitas de satélites a propulsão de veículos espaciais para viagem interestelar.
Os conceitos científicos que embasam a tecnologia de velas solares são bem aceitos e difundidos, porém a tecnologia necessária para a construção viável de velas solares está em desenvolvimento, e missões espaciais baseadas em velas solares partindo de grandes agências ainda não foram executadas. Em 2005, em resposta à falta de interesse governamental, a organização Sociedade Planetária, movida por entusiastas, lançaria a espaçonave Cosmos 1, com propulsão baseada na tecnologia. Porém, o projeto fracassou pois houve uma falha no foguete que iria lançar a espaçonave de um Submarino, no Mar de Barents.
O conceito da tecnologia data desde o século XVII, com Johannes Kepler. Friedrich Zander na década de 1920 novamente propôs esse tipo de tecnologia, que tem sido gradualmente refinada. O intenso interesse recente de estudos científicos começou com um artigo do engenheiro e autor de ficção científica Robert L. Forward em 1984.
Posiciona-se um grande espelho membranoso que reflete a luz do Sol ou de outra fonte luminosa. A pressão de radiação gera uma pequena quantidade de impulsão ao refletir fótons. Inclinando a superfície reflexiva em certos ângulos para a fonte luminosa, gera-se propulsão em direção normal à superfície. Ajustes nos ângulos das velas podem ser feitos com a ajuda de pequenos motores elétricos, para que a vela se incline e possa gerar propulsão na direção desejada.
Teoricamente, também seria possível gerar aceleração em direção à fonte luminosa, contrariando o senso comum, ao desacoplar parte da vela e utilizá-la para concentrar luz numa face reflexiva oposta à fonte de luz.
Os métodos mais eficientes para utilizar velas solares envolvem manobras em direção à fonte de luz, onde a luz é mais intensa. Em meados da década de 1990 foi proposto um método que permite que uma espaçonave equipada com velas solares atinja velocidades de cruzeiro capazes de escapar do sistema solar a velocidades muito maiores do que as atingidas por outros métodos de propulsão avançados, como propulsão nuclear. Demonstrado matematicamente, esse modo de velejar foi considerado como uma das opções para viagens interestelares futuras pela NASA.

Esclarecendo:
Existe um mal-entendido que velas solares são movidas pelo vento solar, ou por partículas carregadas de alta energia do Sol. De fato, tais partículas gerariam impulso ao atingirem velas solares, porém esse efeito é pequeno comparado ao da pressão de radiação da luz: a força da pressão de radiação é cerca de 5.000 vezes maior do que aquela gerada pelo vento solar. Existem modelos propostos que se utilizariam do vento solar, porém precisariam ser muito maiores do que velas solares convencionais.
Outros também teorizam que o princípio das velas solares violaria o princípio da conservação de energia. Esse não é o caso, já que os fótons perdem energia ao atingir os espelhos de uma vela solar ao passarem por desvio Doppler: seu o comprimento de onda aumenta, diminuindo sua energia, em função da velocidade da vela – uma transferência de energia dos fótons solares para a vela. A energia adquirida soma momento à vela.
Atualmente, painéis de controle de temperatura, coletores solares e outras partes móveis são utilizados ocasionalmente como velas solares improvisadas, para ajudar espaçonaves comuns a fazer pequenas correções ou modificações na órbita sem utilizar combustível.
Algumas até tiveram pequenas velas construídas propositalmente para esse uso. Satélites Eurostar da EADS Astrium utilizam velas solares ligadas a seus painéis solares para realizar tarefas de ajuste de momento angular, economizando combustível (esses satélites acumulam momento angular através do tempo e comumente giroscópios são utilizados para controlar a orientação da espaçonave). Algumas espaçonaves não tripuladas, como a Mariner 10, utilizaram velas solares para estender sua vida útil.
Robert L. Forward mostrou que uma vela solar poderia ser utilizada para manipular a órbita de um satélite. Velas solares poderiam, no limite, ser utilizadas para manter um satélite sobre um pólo da Terra. Espaçonaves com velas solares também poderiam ser posicionadas em órbitas próximas ao Sol que seriam estacionárias tanto em relação com a Terra ou com o Sol, que Forward nomeou de ‘satatite’, em referência à estaticidade relativa da espaçonave. Isso seria possível pois a propulsão gerada pela vela cancela a força gravitacional exercida sobre a trajetória desejada. Uma dessas órbitas poderia ser útil para estudar as propriedades do Sol por longos períodos: uma dessas espaçonaves poderia teoricamente ser posicionada diretamente acima de um pólo do Sol e permanecer naquela posição por períodos prolongados.
Forward também propôs o uso de lasers para impulsionar velas solares. Um feixe suficiente poderoso expondo uma vela solar por tempo suficiente poderia acelerar uma espaçonave até uma fração significante da velocidade da luz. Essa tecnologia, porém, iria requerer lasers incrivelmente poderosos, lentes ou espelhos gigantescos.

Assista o vídeo:

14.001 – Física – A Teoria do Multiverso


É um termo usado para descrever o conjunto hipotético de universos possíveis, incluindo o universo em que vivemos. Juntos, esses universos compreendem tudo o que existe: a totalidade do espaço, do tempo, da matéria, da energia e das leis e constantes físicas que os descrevem. É geralmente usado em enredos de ficção científica, mas também é uma extrapolação possível de algumas teorias científicas para descrever um grupo de universos que estão relacionados, os denominados universos paralelos. A ideia de que o universo que se pode observar é só uma parte da realidade física deu luz à definição do conceito “multiverso”.
O conceito de Multiverso tem suas raízes em extrapolações, até o momento não científicas, da moderna Cosmologia e na Teoria Quântica, e engloba também várias ideias oriundas da Teoria da Relatividade de modo a configurar um cenário em que pode ser possível a existência de inúmeros Universos onde, em escala global, todas as probabilidades e combinações ocorrem em algum dos universos. Simplesmente por haver espaço suficiente para acoplar outros universos numa estrutura dimensional maior: o chamado Multiverso.

Os universos seriam, em uma analogia, semelhantes a bolhas de sabão flutuando num espaço maior capaz de abrigá-las. Alguns seriam até mesmo interconectados entre si por buracos negros ou de buracos de minhoca.

Em termos de interpretações da Mecânica Quântica, que, ao contrário da Mecânica Quântica em si, não são cientificamente estabelecidas, a Interpretação de Vários Mundos fornece uma visão que implica um multiverso. Nessa visão, toda vez que uma decisão quântica tem de ser tomada – em termos técnicos, toda vez que há uma redução da função de onda de um estado emaranhado – dois ou mais universos independentes e isolados surgem, um para cada opção quântica possível. Vivemos no universo no qual as decisões quânticas adequadas levam à nossa existência.

Devido ao fato da conjectura de multiverso ser essencialmente ideológica, não havendo, atualmente, qualquer tipo de prova tecnicamente real, a “teoria dos universos paralelos” ou “multiverso” é em essência uma teoria não científica. Nesse ponto, aliada à completa ausência de evidência científica, há ainda a questão concernente à compatibilidade com as teorias científicas já estabelecidas e os rumos diretamente apontados por essas. No conceito de multiverso, imagina-se um esquema em que todas os universos agregavam-se mutuamente por uma infinita vastidão. Tal conceito de Multiverso implica numa contradição em relação à atual busca pela Teoria do Campo Unificado ou pela Teoria do Tudo, uma vez que em cada Universo pode-se imaginar que haja diferentes Leis Físicas.
Em 1952, Erwin Schrödinger deu uma palestra, em Dublin, onde avisou com entusiasmo a audiência que o que estava prestes a enunciar poderia parecer “lunático”. Ele disse que, quando suas equações Nobel pareciam descrever várias histórias diferentes, estas não eram “alternativas, mas que tudo realmente acontece simultaneamente”. Esta é a primeira referência conhecida ao multiverso.
O multiverso inflacionário é composto de vários bolsos em que os campos de inflação se desmoronam e formam novos universos.
A versão membrana do multiverso postula que todo o nosso universo existe em uma membrana (brane) que flutua em uma maior dimensão. Neste volume, existem outras membranas com seus próprios universos. Esses universos podem interagir uns com os outros, e quando colidem, a violência e a energia produzida são mais do que suficientes para dar origem a um big bang. As membranas flutuam ou se aproximam uma da outro, e a cada poucos trilhões de anos, atraídas pela gravidade ou por alguma outra força que não entendemos, colidem. Este contato repetido dá origem a explosões múltiplas ou “cíclicas”. Esta hipótese particular cai sob o guarda-chuva da teoria das cordas, pois exige dimensões espaciais extras.
As diferentes teorias de Multiverso são por muitos utilizadas para contraposição à ideia do Design Inteligente e seu Argumento da Improbabilidade ou Argumento do Universo Bem Ajustado. Ou seja, são utilizadas por muitos como explicação para a pré-assumida “improbabilidade estatística” das leis da física e das constantes físicas fundamentais serem “tão bem ajustadas” para permitirem a construção do universo tal qual o conhecemos; em particular um universo capaz de abrigar vida inteligente com habilidade de indagar sobre a história do próprio universo em que existe.
Tal argumentação é comum em discussões envolvendo os defensores da existência de um “projetista inteligente” e os defensores de sua inexistência, defensores últimos que buscam uma resposta alternativa à questão decorrente da inexistência do projetista onipotente para o universo através da extrapolação das regras científicas encerradas na teoria da evolução biológica ao restante do universo, contudo sem as pertinentes considerações, o que leva à ideia do multiverso como resposta às estipuladas “particularidades” de nosso universo defendidas pela outra ala. O uso de tal linha de raciocínio e resposta é contudo desaconselhado sem acompanhamento dos devidos rigores, e especificamente falho no caso do multiverso. Ele falha essencialmente por desconsiderar que a existência do multiverso não é cientificamente estabelecida, consistindo o argumento por tal apenas em se trocar uma crença por outra; a crença do “projetista inteligente” pela crença do “multiverso”.

Argumento contra
Para começar, como é que a existência dos outros universos deve ser testada? Com certeza, todos os cosmólogos aceitam que existem algumas regiões do universo que se encontram fora do alcance de nossos telescópios, mas, em algum lugar na inclinação escorregadia entre isso e a ideia de que há um número infinito de universos, a credibilidade atinge um limite. À medida que um desliza abaixo dessa inclinação, mais e mais deve ser aceito na fé e cada vez menos está aberto à verificação científica. As explicações multiversas extremas são, portanto, remanescentes das discussões teológicas. Na verdade, invocar uma infinidade de universos invisíveis para explicar as características incomuns da que vemos é tão ad hoc quanto invocar um Criador invisível. A teoria do multiverso pode ser vestida em linguagem científica, mas, em essência, requer o mesmo salto de fé.

– Paul Davies, “A Brief History of the Multiverse”
Cético como sou, penso que a contemplação do multiverso é uma excelente oportunidade para refletir sobre a natureza da ciência e sobre a natureza final da existência: por que estamos aqui …. Ao olhar para esse conceito, precisamos ter a mente aberta, mas não tanto. É um caminho delicado para andar. Os universos paralelos podem ou não existir; O caso não está provado. Vamos ter que viver com essa incerteza. Nada está errado com a especulação filosófica cientificamente baseada, que é o que são as propostas multiversas. Mas devemos nomeá-lo pelo que é.

– George Ellis, Scientific American, “Does the Multiverse Really Exist?”

13.960 – Física – Big Bang foi Descoberto por Acaso


balão do big bang
A origem do Universo foi descoberta em um lugar em que ninguém buscava. E foi formulada graças a uma descoberta fortuita anterior – a que deu origem à radioastronomia, ramo da astronomia que estuda as radiações eletromagnéticas emitidas ou refletidas pelos corpos celestes.
“Na década de 1930, os laboratórios Bell estavam tentando criar radiotelefones, mas havia um sinal que estava interferindo nas transmissões pelo Atlântico. Pediram a Karl Jansky (físico e engenheiro de rádio) para investigar”, contou à BBC News Sara Bridle, professora de astrofísica da Universidade de Manchester.
A descoberta foi importante porque revelou todo um pedaço do Universo que ainda era completamente invisível e, por isso, desconhecido.
Para o astrônomo Nial Tanvir, era como estar num quarto com pouca luz, observando assustado tudo o que se podia enxergar e, de repente, alguém aparece com um óculos de visão noturna.
A origem do Universo é, por excelência, um desses processos – comprovado graças ao acaso, que ajudou a demonstrar empiricamente o chamado Big Bang, ou Grande Explosão.
“A ideia do Big Bang, do ponto de vista teórico, é que num momento no passado, toda a matéria e toda a energia do Universo estava um único lugar e logo explodiu. Essa explosão marcou o início do tempo e da expansão do espaço, partindo do nada, e a expansão continua acontecendo”, resume Tanvir. “Soa como uma teoria louca, mas é o que a matemática nos diz”, completa o astrônomo.
A teoria da Grande Explosão ganhou força durante o século passado. No entanto, até meados dos anos 1960, ainda faltavam provas contundentes para derrubar teorias alternativas.
A evidência que faltava veio à tona graças à radiação cósmica de fundo em micro-ondas (CMB, na sigla em inglês), outro acaso.
Tudo começou com Arno Penzias e Robert Woodrow Wilson trabalhavam com uma antena supersensível – com design digno de filme de ficção científica (veja na foto abaixo) – desenhada para detectar as ondas de rádio emitidas pelos echo balloon satellites, satélites em formato de balão.
Para medir as ondas, elas precisavam eliminar todo tipo de interferência que viesse de outras fontes.
Quando fizeram isso, os pesquisadores se depararam com um ruído desconhecido e persistente, “um sinal fraco, mas facilmente detectável, que não vinha de nada na Terra nem no Sistema Solar, nem mesmo da nossa galáxia”, diz Tanvir, relembrando a história.

Esse sinal vinha de todas as direções.
Um ruído incômodo
Em todos os lugares eles encontravam o mesmo “calor de fundo”, como o próprio Penzias explicou em uma entrevista à BBC no final dos anos 70, referindo-se à energia emitida pelas ondas.
Um esforço para melhorar as comunicações de rádio, um ruído no espaço e alguns físicos teóricos por perto… tudo se reuniu em um notável acidente que, segundo a maioria dos cientistas, deu ao mundo o que era necessário para comprovar a maior de todas as teorias: o Big Bang.
Poderia-se dizer que Penzias e Wilson ganharam na loteria científica.
Uma vez que o cocô do pombo foi descartado, o “ruído” irritante acabou por ser a descoberta acidental do século, a evidência da origem do Universo.
Mas, embora a descoberta da CMB, a radiação cósmica de fundo em micro-ondas, tenha sido um acidente, será possível afirmar que, realmente, foi pura sorte?
Penzias e Wilson tiveram a sorte de se deparar com o ruído e de encontrar a teoria para explicá-lo literalmente logo ao lado. A dupla, entretanto, foi muito cuidadosa e não ignorou as evidências que lhe apareciam, por mais irritantes que elas fossem.
Os cientistas ganharam em 1978 o prêmio Nobel de Física.
Em um mundo em que o tempo de acesso aos telescópios é regulamentado e o teste de hipóteses, base do método científico, depende de financiamento, a radioastronomia moderna aprendeu com os acidentes de seu passado.

13.811 – O que é uma tempestade solar e como ela afeta a Terra


tempestadesolarnasa
Entendendo como funciona o fenômeno:

O Sol não é só uma estrela que influencia os planetas ao seu redor, ele também é um corpo em constante variação, com explosões violentas de radiação, e um exímio formador de energia em quantidades absurdas para os padrões terrestres.
Sua massa — de cerca de 330 mil vezes a da Terra — corresponde a 99,86% da massa do Sistema Solar. O apelido de Astro Rei não é mera força de expressão. Essa esfera gigante é composta, basicamente por Hidrogênio e Hélio, sendo que 3/4 de seu total é reservado ao primeiro elemento. Menos de 2% de sua composição consiste em elementos pesados, como oxigênio e carbono.
Diferente dos planetas que são considerados rochosos, como a Terra e Marte, ou gasosos, como Saturno e Júpiter, nossa fonte de calor é formada por plasma, gasoso na superfície e mais denso conforme se proxima do núcleo.
É exatamente ali, em seu coração, sob uma temperatura de 15 milhões de graus centígrados, que as reações químicas nucleares mais selvagens acontecem. São até 600 milhões de toneladas de hidrogênio convertidos em hélio por segundo. A diferença da massa dos dois elementos é expelida em forma de energia. Para sair do núcleo e chegar até a superfície da estrela, essa energia leva até um milhão de anos — um constraste bem grande com o tempo que as partículas do Sol levam para chegar até a Terra: 8 minutos.
Por isso, a camada mais externa do Sol, a Coroa, está sempre se expandindo, criando os ventos solares, por isso o nome “ejeções de massa coronal”. Quando explosões de grandes proporções acontecem nessa área, partículas solares são liberadas.
Os astrônomos estimam que o nosso Sol tenha 4,5 bilhões de anos.Considerando que uma estrela desta grandeza mantém seu brilho por até 10 bilhões de anos, ainda teremos muito com o que nos preocupar.
Os efeitos na Terra
Os aparelhos tecnológicos que usamos na Terra sofrem grande influência do clima espacial. Aparelhos como GPS e comunicadores que dependem de frequência de rádio, como aviões, podem ser impactados por estes presentes do Sol.
Em 1859, uma das maiores ejeções já lançadas pelo Sol atingiu o campo magnético da Terra, causando o colapso dos serviços telegráficos. Como dependemos muito mais da energia elétrica agora, se isso tivesse acontecido hoje os estragos poderiam ter sido maiores.
Na história, nenhuma tempestade solar jamais afetou uma missão espacial tripulada. Mas, em 1972, a NASA registrou rajadas solares que poderiam matar um ser humano desprotegido do campo magnético da Terra durante as missões Apollo 16 e 17.
Mas, calma, a NASA está sempre atenta às atividades solares. A agência espacial garante que mantém uma frota de naves heliofísicas que monitoram o ambiente espacial entre o Sol e a Terra. Além disso, existem eventos naturais impressionantes e maravilhosos só acontecem graças à influência do Sol, como a aurora boreal e a austral, que são o efeito mais visível do Astro Rei em nosso mundo.

13.772 – Como Surgiu a Força de Gravidade?


gravitons
De todas as forças do universo, a gravidade é aquela que se estuda há mais tempo e, paradoxalmente, a menos conhecida. Qualquer aluno que tenha estudado um pouco de física lembra-se da história de Galileu soltando bolas de chumbo, madeira e papel do alto da torre de Pisa, na Itália, na tentativa de entender como agia essa força estranha que atrai as coisas em direção ao centro da Terra. Bem antes, Aristóteles havia proposto que isso ocorria por nosso planeta ser o centro do universo, o lugar onde, pela própria natureza, as coisas deveriam estar. Quando surgiu o heliocentrismo, com Copérnico, o enfoque mudou e tornou-se necessária a revisão das leis sobre a queda dos corpos. Mais tarde, novas observações e teorias levaram à lei da gravitação universal formulada por Isaac Newton.
O grande passo seguinte só foi dado quase três séculos depois, graças a Albert Einstein, com sua Teoria Geral da Relatividade, de 1916 – trabalho pelo qual recebeu o Nobel de Física em 1921. As ondas gravitacionais são filhas naturais da teoria da gravitação proposta por Einstein, mas só existem no papel. De onde vêm e qual é sua importância são perguntas ainda sem resposta comprovada, já que nunca foram detectadas.
Segundo Einstein, planetas e estrelas curvam o espaço à sua volta pelo simples fato de estarem ali presentes – por seguirem a curvatura do espaço é que corpos celestes giram, gravitam em torno uns dos outros, como a Terra ao redor do Sol e a Lua em volta da Terra. Imagine então a ocorrência de um evento violento, como a explosão de uma estrela massiva que chegou ao fim da vida – uma supernova. Ou a fusão de duas estrelas de nêutrons, astros particularmente densos, ou de dois buracos negros com seu poder esmagador. Acontecimentos dessa magnitude provocam poderosas acelerações da matéria que interferem no campo gravitacional em volta. São como uma pedra jogada na água: formam ondulações, deformando o espaço. Se o pensamento é correto, poderemos detectar essas ondas no momento em que atingem a Terra após terem viajado até nós à velocidade da luz.
Durante muito tempo astrônomos duvidaram da existência das ondas gravitacionais. Desde a década de 1960, porém, físicos se empenham em provar que elas existem, confiando em que a Teoria Geral da Relatividade esteja correta, já que só tem colecionado acertos. Sua comprovação seria como abrir uma porta especial para o conhecimento do universo, que tem sido estudado por radiações eletromagnéticas, ou luz, com bandas de radiação diferentes, como de rádio, raios gama, raios X, ultravioleta e infravermelhos. Ocorre que radiações eletromagnéticas não são suficientemente seguras para nos dar determinadas informações. É o caso de eventos em buracos negros, pois eles não deixam a luz escapar. Já as ondas gravitacionais cruzam o espaço sem sofrer alterações e podem chegar até nós com dados desconhecidos sobre fenômenos do universo. Os mais otimistas anteveem até a possibilidade de observar um “fóssil”, a desconhecida radiação gravitacional gerada pelo Big Bang. Estaríamos inaugurando um novo tipo de astronomia, como nunca antes se imaginou.
As ondas gravitacionais, muito mais fracas que as eletromagnéticas, são dificílimas de detectar. O instrumental utilizado para isso é de extrema sensibilidade e qualquer evento, como o som de um avião nos arredores, pode produzir sinais capazes de confundir os pesquisadores. O problema é que tudo, ou quase, é mais forte que uma onda gravitacional. Em 2007, o Observatório de Ondas Gravitacionais por Interferômetro Laser (Ligo), aparelho norte-americano de captação de ondas gravitacionais, juntou-se aos europeus Virgo (franco-italiano) e Geo (alemão), bem como aos observatórios espaciais Lisa e Lagos, num esforço de observação. Espera-se ampliar a chance de detecção, que hoje não passa de apenas uma por ano.
Virgo, construído na cidade italiana de Cascina, na Toscana, perto de Pisa, onde Galileu fez suas experiências sobre gravidade, é um imenso interferômetro de ondas gravitacionais. Tem produzido dados de qualidade comparável aos de Ligo e Geo. O observatório é formado por um laser cujo facho de luz se divide e percorre os dois gigantescos braços de Virgo, de 3 quilômetros de comprimento, colocados em ângulo reto.
No interior dos túneis abrigados nos braços de Virgo, em um ambiente próximo ao vácuo, os raios lasers alinhados, de alta potência, são refletidos por múltiplos espelhos e percorrem incessantemente os espaços, indo e voltando.
O objetivo dos físicos é detectar uma ínfima defasagem entre os lasers, o que indicaria uma variação no comprimento dos braços, já que, teoricamente, a passagem de ondas gravitacionais deve alongar um dos braços e contrair o outro. Tal acontecimento indicaria que alguma onda gravitacional estaria atravessando o dispositivo. Espera-se que o sistema acuse o evento com uma precisão de um bilionésimo de átomo.

Um longo caminho
A construção de Virgo exigiu cuidados especiais. É uma das áreas mais planas da Itália, o que é bom. Mas há o inconveniente da instabilidade do solo, como resultado da retirada constante de água destinada à agricultura. Basta lembrar a torre de Pisa para ter uma ideia do problema.
Os túneis de Virgo deslocam-se até um milímetro por mês em alguns pontos, exigindo fiscalização regular e a compensação imediata de qualquer desvio. Os espelhos foram fabricados em Lyon (França), num laboratório especialmente criado para isso, e sua refletividade é das maiores do mundo – aproximadamente 99,995%. Cada túnel é protegido por um sistema de isolamento sísmico superespecial, que preserva os espelhos dos movimentos do solo e de grande parte das vibrações ambientais. A aparelhagem é tão sensível que pode até mesmo parar de funcionar se houver fortes vibrações. É tão complicado que os dirigentes até pensam em suspender a vigilância noturna, feita de carro, para não perturbar o sistema. Ruídos e vibrações afetam a pesquisa e torna-se muito difícil isolar um sinal possivelmente significativo da grande quantidade de sinais parasitas. Seria como tentar ouvir um sussurro perto de uma banda de rock estridente.
Na sala de controle, técnicos monitoram os acontecimentos nas telas dos computadores. Atualmente, a chance de detectar uma onda gravitacional é rara: apenas uma por ano. E detectar algo que possivelmente seja um evento dessa natureza deve ser confirmado com análises do CD de dados, cujos resultados poderão demorar meses a sair. Acontecimentos de vulto podem ser mais fáceis de registrar. O jeito é esperar pela oportunidade de ocorrer uma fusão de estrelas de nêutrons bem próxima da Terra, com sinal muito forte, e avaliar o que será registrado nas horas seguintes. Tudo fica ainda mais difícil, como os físicos já observaram, aperfeiçoando seus modelos teóricos, porque estrelas agonizantes enviam bem menos ondas gravitacionais do que se pensava. Eles reconhecem que estão longe de surpreender uma supernova em vias de explodir, perto ou longe da Via Láctea.
É de se louvar esse esforço técnico-científico, diante da possibilidade de ampliar e modificar o conhecimento atual muito além do sonhado. Trata-se não apenas de ver os astros, como na astronomia ótica, ou de entendê-los, como na radioastronomia. A astronomia gravitacional colocará em nossas mãos a inimaginável beleza de “sentir” os astros, como se ganhássemos, assim, uma percepção extra. É esperar para ver.

Glossário da pesquisa gravitacional
Lei da gravitação universal – Diz que dois objetos se atraem gravitacionalmente por meio de uma força que é proporcional à massa de cada um deles e inversamente proporcional ao quadrado da distância que os separa.

Teoria Geral da Relatividade – É a teoria do espaço-tempo. Diz que as forças gravitacionais decorrem da curvatura do espaço-tempo ocasionada pela presença de massas. O espaço-tempo é plano onde não há forças gravitacionais e nele os corpos se movem em linha reta.

Espaço-tempo – Conceito elaborado por Einstein dentro da Teoria Geral da Relatividade. É o tecido do universo, em que o espaço tridimensional e o tempo formam um todo de quatro dimensões. O tempo não flui sempre de modo uniforme, como se imaginava. A matéria pode atuar sobre ele.
Onda gravitacional – É a que transmite energia por meio de deformações no espaço-tempo. A Teoria Geral da Relatividade diz que corpos massivos em aceleração podem causar o fenômeno, que se propaga à velocidade da luz.
Ano-luz – É a unidade de distância igual a 9,467305 x 10¹² km, que corresponde à distância percorrida pela luz, no vácuo, durante um ano.
Sinais – Joseph Taylor e Russell Hulse, astrofísicos norte-americanos, observaram indícios da existência de ondas gravitacionais ao estudar a movimentação de duas estrelas de nêutrons que apresentavam desaceleração correspondente à energia que, em tese, deviam perder com a emissão de ondas gravitacionais. Receberam o Nobel de Física em 1993.
Interferometria – Ciência e técnica da sobreposição de duas ou mais ondas, cujo resultado é uma nova e diferente onda. É usada em diferentes campos, como astronomia, oceanografia, sismologia, metrologia óptica, fibras ópticas e mecânica quântica.

13.752 – FRB 180725A: cientistas detectam sinal misterioso e poderoso de rádio sem origem conhecida


Nosso universo está repleto de luz invisível. Além do espectro visível, diversos sinais de rádio e micro-ondas inundam o espaço provenientes das mais diversas fontes, como estrelas em colapso, campos magnéticos, nuvens de poeira espacial e buracos negros famintos.
Mas um desses sinais de luz – chamado de “rajadas rápidas de rádio”, ou “explosões rápidas de rádio” (do termo original em inglês “fast radio bursts” ou FRB) – tem intrigado enormemente os cientistas porque não conseguimos determinar sua origem.
As FRBs são muito poderosas e duram apenas alguns milissegundos. Na manhã de 25 de julho, uma dessas explosões de energia passou zunindo por uma nova série de radiotelescópios localizada nas montanhas da Colúmbia Britânica, no Canadá, registrando um dos mais raros desses eventos já detectados.
O sinal misterioso, denominado FRB 180725A, foi transmitido em frequências de até 580 megahertz, quase 200 MHz abaixo de qualquer outro FRB detectado.

O que sabemos sobre FRBs
Segundo Patrick Boyle, autor do The Astronomer’s Telegram (um boletim de observações astronômicas postadas por cientistas credenciados) e gerente do projeto CHIME, o radiotelescópio que detectou o novo sinal, FRBs ocorrem tanto durante o dia quanto a noite, e seus horários não estão correlacionados com atividades conhecidas no local de origem, nem com outras fontes notórias de tal energia.
A frequência rápida e baixa dos sinais sugerem que as explosões são extremamente brilhantes e originam-se de uma fonte insanamente poderosa em algum lugar do cosmos.
Procedências possíveis incluem supernovas, buracos negros supermassivos e algumas outras fontes de radiação eletromagnética poderosa, como os pulsares, mas, até agora, não identificamos uma fonte natural para os FRBs com confiança.
Logo, os cientistas não descartam uma “origem artificial” dos sinais – isto é, inteligência extraterrestre.
O CHIME é um radiotelescópio de última geração projetado para detectar ondas de rádio antigas enviadas quando o universo era apenas uma criança, entre 6 e 11 bilhões de anos atrás. Embora esteja em operação há apenas cerca de um ano, ele já detectou vários FRBs notáveis, incluindo diversos sinais de baixa frequência que se seguiram logo após o poderoso FRB 180725A na semana passada.
Quem sabe mais tecnologias como o CHIME ajudem os cientistas a finalmente desvendarem tais rajadas rápidas de rádio e sua origem elusiva. [LiveScience]

13.704 – O Tempo é Relativo


soyuz
As leis da física são as mesmas para qualquer referencial inercial, e a velocidade da luz independe da fonte emissora e de quem a recebe, sendo ela (velocidade da luz) constante em todos os sistemas inerciais de referência.
Os postulados citados acima, propostos por Albert Einstein, foram os pilares pra o desenvolvimento da Teoria da Relatividade Especial, que tem como uma de suas implicações a dilatação do tempo.
No dia-a-dia é corriqueira a ideia de que o tempo é algo universal; que uma vez sincronizados dois relógios idênticos, esses irão sempre ser vistos indicando a mesma leitura, independentemente de suas posições, movimentos relativos, acelerações, ou de quem esteja a observá-los. A mesma ideia atrela-se à noção de separação espacial entre dois pontos. Espaço e tempo são, no dia-a-dia e no âmbito da mecânica newtoniana, entendidos como universais e absolutos; restando às velocidade serem relativa aos referenciais. Tal paradigma, ainda compatível com a maioria dos eventos encontrados no cotidiano, perdurou dentro da ciência até o início do século XX, quando a teoria da relatividade veio à tona, mostrando que a realidade natural é, contudo, bem mais sutil do que se pensava até então.
No novo paradigma a inferência de tempo deixa de ser absoluta e passa a ser algo estritamente pessoal, atrelada a cada referencial em particular; e dois referenciais em movimento relativo ou sob acelerações distintas geralmente não concordarão quanto às medidas de tempo ou intervalos de tempo. A noção de simultaneidade absoluta também cai por terra, e referenciais diferentes geralmente não concordarão quanto a simultaneidade de dois eventos, mesmo que em algum referencial eles sejam vistos de forma simultânea.
Dilatação do tempo designa, no âmbito da mecânica einsteiniana, entre outros o fenômeno pelo qual um observador percebe, em virtude do movimento relativo não acelerado entre os dois referenciais, que o relógio de um outro observador que encontra-se a afastar-se, fisicamente idêntico ao seu próprio relógio, está a “andar” mais devagar do que o tempo que observador infere, no caso mais devagar do que seu tempo próprio. A percepção do primeiro observador é de que o tempo “anda mais devagar” para o relógio móvel, mas isso é somente verdade no contexto do referencial do observador estático. Em ausência de aceleração, em princípio paradoxalmente, o outro observador também verá o relógio anexado ao primeiro referencial – esse agora móvel – “andar” mais devagar que seu próprio relógio. Localmente, i.e., da perspectiva de qualquer outro observador estático junto a qualquer um dos dois referenciais, dois relógios, se sincronizados e mantidos juntos – sem movimento relativo – não atrasarão ou adiantarão um em relação ao outro.
Ao passo que na relatividade restrita – teoria ainda atrelada ao conceito de referencial inercial – a dilatação do tempo é simétrica em relação aos referenciais, ou seja, para qualquer observador é o relógio móvel que atrasa-se em relação ao que carrega consigo, no contexto da relatividade geral, que estende-se a todos os referenciais (covariância geral), a dilatação temporal devida a acelerações não é simétrica, e nesse caso ambos os observadores concordarão sobre qual dos relógios se adianta e qual se atrasa, se o seu ou o do outro.
Considerando novamente a relatividade restrita, o intervalo de tempo entre dois eventos quaisquer é sempre o menor possível quando medido pelo observador que detém o relógio, sendo este conhecido como tempo próprio deste observador. Qualquer outro observador em movimento relativo medirá um intervalo de tempo maior entre os mesmos dois eventos considerados, sendo a expressão “dilatação do tempo” bem sugestiva, portanto.

13.672 – Astrofísica – Estrelas já nasciam a todo vapor só 250 milhões de anos após Big Bang


eso-galaxia-estrela-oxigenio
Graças a alguns dos mais poderosos telescópios em operação, astrônomos conseguiram obter detalhes de uma das galáxias mais distantes de que se tem conhecimento. Medições indicaram que a luz do objetoMACS1149-JD1 foi emitida há 13,3 bilhões de anos — apenas 500 milhões de anos após o Big Bang. Mas há indícios de que estrelas já se formavam ali bem antes disso.
Uma equipe internacional de pesquisadores descreve a descoberta de oxigênio naquela galáxia, a mais distante detecção do elemento já realizada no Universo. E sua presença só pode ser explicada pela existência de uma geração anterior de estrelas, que teria começado a se formar 250 milhões de anos antes.
Como apenas hidrogênio, hélio e lítio foram forjado pelo próprio Big Bang, o surgimento do oxigênio só se deu através do processo de fusão das primeiras estrelas. Para quantificar o elemento e obter medidas precisas da distância de MACS1149-JD1, os astrônomos utilizaram o radiotelescópio ALMA e o VLT, do ESO, além dos telescópios espaciais Hubble e Spitzer.
“Essa galáxia é observada em um tempo no qual o Universo tinha apenas 500 milhões de anos e, ainda assim, já possui uma população de estrelas maduras”, disse em um comunicado o co-autor do artigo, Nicolas Laporte, pesquisador da University College London (UCL). “Podemos usá-la para sondar um período anterior, completamente desconhecido da história cósmica.”

O estudo coloca os cientistas um passo à frente em uma das buscas mais acirradas da astronomia moderna: determinar o momento em que as primeiras estrelas e galáxias surgiram. É a chamada aurora cósmica.
“Com essas novas observações de MACS1149-JD1, estamos chegando mais perto de testemunhar diretamente o nascimento da luz das estrelas! Como somos todos feitos de material estelar processado, estamos descobrindo nossas próprias origens”, diz o co-autor Richard Ellis, astrônomo sênior da UCL.

13.663 – Mega Hipóteses Astronômicas – Superterras podem estar prendendo ETs de explorar universo


superterras
Por exemplo, para lançar uma missão lunar parecida com a missão Apollo, um foguete em uma superterra teria que ser uma massa de cerca de 400.000 toneladas devido às exigências de combustível, estipula o estudo, o que é dez vezes mais do que é exigível na Terra. Para comparar, esse peso é mais ou menos equivalente ao da Grande Pirâmide de Gizé no Egito, informa o portal Space.com.
O autor do relatório e investigador independente afiliado ao observatório alemão Sonnesberg, Michael Hippke, ressalta que nos planetas mais maciços o voo espacial seria exponencialmente mais caro. “Tais civilizações não teriam televisão de satélite, uma missão lunar ou um telescópio Hubble.”
Pesquisas anteriores sugeriam não só que os mundos que não são parecidos com a Terra poderiam criar circunstâncias adequadas para a vida, mas também que alguns poderiam ser até melhores em comparação com os planetas parecidos com a Terra. As superterras, segundo os especialistas, poderiam ser “super-habitáveis”, já que a sua massa enorme cria uma gravidade mais forte e por isso eles poderiam ter camadas de atmosfera mais espessas e proteger melhor a vida dos nocivos raios cósmicos.

Se a vida nas superterras distantes evoluísse, tais alienígenas poderiam desenvolver uma civilização avançada capaz de efetuar voos espaciais. Entretanto, Hippke ressalta que a força gravitacional destes planetas poderia dificultar muito a decolagem dos extraterrestres dos seus planetas.
“Civilizações das superterras têm menos chances de explorar as estrelas. Ao contrário, de certo modo ficariam presos em seus planetas de origem e, por exemplo, beneficiariam mais do uso de lasers ou telescópios de rádio para comunicação interstelar em vez de enviar sondas ou naves espaciais”, sublinha o autor do estudo.
Para ele, os foguetes funcionam melhor no vácuo que em uma atmosfera e os habitantes de superterras poderiam atingir a órbita via foguetes convencionais usando elevadores espaciais viajando com cabos gigantes. Outra possibilidade, conforme Michael Hippke, é a propulsão por pulsos nucleares, quer dizer, um veículo seja levado ao espaço por explosões de bombas atômicas. Mesmo assim, o especialista adverte que este modo poderia levar a grande poluição ambiental.

13.643 – Novo estudo sugere que existia algo antes do Big Bang


O que é o Big Bang

Cerca de 90 anos atrás, um astrônomo belga chamado Georges Lemaître propôs que mudanças observadas na luz de galáxias distantes implicavam que o universo estava se expandindo.
Se o universo está ficando maior, isso significa que costumava ser menor.
Ao “voltar a fita” cerca de 13,8 bilhões de anos, chegamos finalmente em um ponto no qual o espaço deveria estar confinado a um volume incrivelmente pequeno, também conhecido como “singularidade”.
Os desdobramentos do Big Bang
Há uma série de modelos que os físicos usam para descrever o “nada” do espaço vazio. A relatividade geral de Einstein é um deles: descreve a gravidade em relação à geometria do tecido subjacente do universo.
Mas teoremas propostos por Stephen Hawking e o matemático Roger Penrose, por exemplo, afirmam que as soluções para as equações da relatividade geral em uma escala infinitamente densa – como dentro de uma singularidade – são incompletas.
Recentemente, Hawking deu sua opinião sobre o que havia antes do Big Bang em uma entrevista para Neil deGrasse Tyson, onde ele comparou as dimensões espaço-tempo do Big Bang com o polo sul. “Não há nada ao sul do Polo Sul, então não havia nada antes do Big Bang”, disse.
No entanto, outros físicos argumentam que há algo além do Big Bang. Uma das propostas, por exemplo, é de um universo espelho do outro lado desse evento, onde o tempo se move para trás.
A hipótese
Na nova pesquisa, os físicos Tim A. Koslowski, Flavio Mercati e David Sloan apresentaram um modelo que ressalta as contradições do Big Bang, conforme a relatividade geral.
Voltando a toda a questão da singularidade, os pesquisadores reinterpretaram o modelo existente do espaço em expansão, distinguindo o próprio espaço-tempo do “material” nele.
Eles chegaram a uma descrição do Big Bang onde a física permanece intacta conforme o estágio em que atua se reorienta.
Ao invés de uma singularidade, a equipe chama isso de “ponto de Janus”, em homenagem ao deus romano com dois rostos.
Entenda
Antes do ponto de Janus, as posições relativas e as escalas das coisas que compõem o universo efetivamente se achatariam em uma “panqueca” bidimensional à medida que voltamos no tempo.
Passando pelo ponto de Janus, essa panqueca se torna 3D novamente, apenas de trás para a frente.
É como se estivéssemos em um universo “invertido”. Os pesquisadores acreditam que isso poderia ter profundas implicações na simetria da física de partículas, talvez até produzindo um universo baseado principalmente em antimatéria.
Embora essa ideia de inversão não seja nova, a abordagem dos pesquisadores em torno do problema da singularidade é. “Não apresentamos novos princípios e não modificamos a teoria da relatividade geral de Einstein – apenas a interpretação que é colocada sobre os objetos”, disse um dos pesquisadores, David Sloan, da Universidade Oxford.

13.640 – O Legado de Stephem Hawking


hawking
A carreira de Stephen William Hawking (1942-2018), já seria fantástica para uma pessoa qualquer. Mas Hawking se agigantou ao contrariar a previsão dos médicos de que não sobreviveria a uma doença degenerativa rápida e mortal.
Seu pai, Frank Hawking, era médico, e sua mãe, Isobel Hawking, estudou filosofia, política e economia. Ambos se formaram pela Universidade de Oxford, onde viviam. Ele inglês, ela escocesa, o casal se conheceu logo após o início da Segunda Guerra Mundial, onde ela trabalhava como secretária e ele, médico.
Stephen foi o primeiro filho dos dois. Depois dele viriam duas irmãs, Philippa e Mary, e um irmão adotado, Edward. Em 1950, quando o jovem Hawking tinha 8 anos, Frank se tornou chefe da divisão de parasitologia do Instituto Nacional para Pesquisa Médica, e a família se mudou para St. Albans. Não tinham luxos e eram tidos pelos vizinhos e conhecidos como muito inteligentes e excêntricos.
Curiosamente, Stephen demorou a engrenar nos estudos. Aprendeu a ler tardiamente, aos 8 anos. Da infância, Hawking se lembra de sua paixão por trens de brinquedo e, mais tarde, aeromodelos. “Meu objetivo sempre foi construir modelos que funcionassem e que eu pudesse controlar”, contou o cientista, em sua autobiografia Minha Breve História, publicada em 2013.
Esse desejo de compreender como as coisas funcionam e controlá-las seria a motivação mais básica para perseguir uma carreira em física e cosmologia, segundo ele. Partiu para estudar física na Universidade de Oxford e estava namorando Jane Wilde, uma amiga de sua irmã, quando, em 1962, começou a sentir os primeiros sintomas de sua doença. Recebeu então o diagnóstico: esclerose lateral amiotrófica.
De progressão usualmente acelerada, ela é caracterizada pela crescente paralisia dos músculos, culminando com a incapacidade de respirar e a morte. O médico previu que Hawking não viveria mais três anos. Não haveria tempo sequer para concluir seu doutorado em física.

Stephen e Jane discutiram aquela situação terrível e decidiram manter o relacionamento. Tornaram-se noivos em 1964, o que, segundo o próprio Hawking, lhe deu “algo pelo que viver”. Casaram-se em 14 de julho de 1965. Tiveram um filho, Robert, em 1967, uma filha, Lucy, em 1970, e um terceiro filho,

Timothy, em 1979. Hawking seguia desafiando o prognóstico médico. De forma jamais vista, a doença se estabilizou e entrou numa marcha lenta sem precedentes. Não que Hawking não tenha pago um alto preço, com a crescente perda de controle do corpo. Mas, surpreendendo a todos, o cientista conseguiu ter uma carreira e uma vida plenas. Mas obviamente a vida da família se tornava cada vez mais difícil. Os anos 1970 marcaram o auge da produção científica de Stephen. Ao fim da década, ele assumiria a cátedra lucasiana na Universidade de Cambridge – a mesma que havia sido ocupada por Isaac Newton séculos antes –, onde permaneceria por mais de três décadas, até se aposentar. E foi nessa mesma época que ele de fato encantou o mundo com sua pesquisa.

O maior feito científico do físico inglês foi demonstrar que os buracos negros não são completamente negros, e sim emitem uma pequena quantidade de radiação. Até então, pensava-se que esses objetos – normalmente fruto da implosão de uma estrela de alta massa que esgotou seu combustível – fossem literalmente imortais. Como nada consegue escapar de seu campo gravitacional, inclusive a luz, o futuro do cosmos tenderia a ter somente buracos negros gigantes, que permaneceriam para todo o sempre.

Contudo, ao combinar efeitos da mecânica quântica à relatividade geral, Hawking descobriu que a energia do buraco negro poderia “vazar” lentamente na forma de radiação. Com isso, ao longo de zilhões de anos, até mesmo esses parentemente indestrutíveis objetos tendem a deixar de existir.

Se Hawking cativou os físicos com essa previsão surpreendente – que só não lhe valeu um Prêmio Nobel pela dificuldade extrema de detectar a sutil radiação emanada de um buraco negro –, ele conseguiu capturar com igual habilidade a imaginação do público, com vários livros de divulgação científica, a começar pelo bestseller Uma breve história do tempo, de 1988.

A imagem do “gênio preso a uma cadeira de rodas que se comunica por um sintetizador de voz” era irresistível demais para a mídia, e Hawking soube usar sua fama em favor de causas importantes, como a defesa dos direitos dos deficientes físicos ou a advocacia da exploração espacial. De forma igualmente surpreendente, tornou-se um ícone da cultura pop.

Em 1992, Hawking participou, como ele mesmo, de um episódio da série de TV Jornada nas estrelas: A nova geração. Numa cena muito interessante, ele aparece jogando pôquer com Isaac Newton, Albert Einstein e o androide Data, um dos personagens principais do programa. Dois anos depois, o grupo Pink Floyd inclui trechos de falas do sintetizador de Hawking na música “Keep talking”. Em 2007, em comemoração aos seus 65 anos, o físico faz um voo parabólico em avião para experimentar a mesma ausência de peso que se sente no espaço. E em 2012 ele fez uma ponta num episódio da série de comédia americana The Big Bang Theory.

Essa cortina de fama, contudo, não conseguia esconder as dificuldades de Hawking na vida pessoal. Ao final da década de 1970, Jane, compreensivelmente, se apaixonou por um organista de igreja que se tornara amigo da família, Jonathan Hellyer Jones. A relação passou muito tempo num estágio platônico e acabou evoluindo com a aceitação de Hawking. Diz Jane que ele concordou, “contanto que eu continuasse a amá-lo”. No fim, o casamento acabou chegando ao fim depois que o cientista acabou se apaixonando por Elaine Mason, uma das enfermeiras que lhe prestavam cuidados. Hawking casou-se pela segunda vez em 1995, e o novo relacionamento durou até 2006. Houve rumores de que Elaine o agredia, mas Stephen jamais quis prestar queixa, deixando a situação no ar. “Meu casamento com Elaine foi apaixonado e tempestuoso. Tivemos nossos altos e baixos, mas o fato de Elaine ser enfermeira salvou minha vida em diversas ocasiões”, resumiu, em sua autobiografia.
Apesar da fama, Hawking nunca gostou de discutir seus problemas pessoais em público, e durante todo esse período, não houve exceção. Em compensação, sua celebridade pode tê-lo levado a violar um dos mais básicos princípios do comportamento acadêmico: não se deve fazer afirmações extraordinárias sem evidências igualmente extraordinárias.

Em 2004, o pop-star britânico anunciou ter solucionado um dos mais intrigados problemas ligado à física de buracos negros, o chamado “paradoxo da informação”. É basicamente a ideia de que a informação codificada no interior das partículas que caem no buraco negro é destruída e desaparece do Universo para sempre. Os físicos consideram isso paradoxal porque as leis físicas funcionam justamente em razão das condições anteriores do sistema. Se você parte de um estado “desinformado”, não há como aplicar as teorias sobre ele para saber o que acontece depois ou determinar o que ocorreu antes.

Ao dizer que teria resolvido o dilema, Hawking chamou a atenção dos físicos do mundo inteiro. Mas ele nunca apresentou cálculos que demonstrassem isso. Dez anos depois, em 2014, repetiu a dose, dizendo ter concluído que buracos negros podem nem existir.

Mais uma vez um choque: a imensa maioria dos cientistas já estava convencida de que esses fenômenos são reais, depois de estudá-los a fundo – embora só por meio de equações. Mas Hawking de novo não apresentou o devido embasamento matemático para demonstrar sua conclusão bombástica.
A situação é perfeitamente compreensível, dada a extrema dificuldade que Hawking tinha para se comunicar. Só o fazia por meio de um computador, que traduzia pequenos movimentos da bochecha em letras e palavras, que então são expressas por meio de um sintetizador de voz. Imagine a dificuldade do cientista em desenvolver suas ideias, altamente matemáticas, valendo-se apenas de sua mente para proceder com os cálculos. É natural que o pesquisador tenha passado o fim da vida desenvolvendo apenas artigos sumários, na esperança de que outros fisgassem as ideias e as desenvolvessem mais concretamente.
Fora do âmbito acadêmico, Hawking também soube usar muito bem sua fama, ao alertar para riscos existenciais à humanidade ocasionados pelo progresso tecnológico, em especial a inteligência artificial. “As formas primitivas de inteligência artificial que temos agora se mostraram muito úteis. Mas acho que o desenvolvimento de inteligência artificial completa pode significar o fim da raça humana”, disse o cientista, em 2014.
Convencido de que a humanidade precisa colonizar outras partes do Universo para sobreviver a esse e outros riscos à nossa existência, Hawking era um dos primeiros passageiros na lista de espera da empresa Virgin Galactic, que deve realizar voos espaciais suborbitais nos próximos anos. Morreu aos 76 anos, em Cambridge, sem ter realizado este sonho.

13.511 – A estrela mais misteriosa da galáxia continua confundindo cientistas


estrela-KIC-8462852
A estrela chamada KIC 8462852 já causou bastante agitação na comunidade científica, mas não vai ser desta vez (ainda) que solucionaremos seus mistérios.
Na verdade, eles acabaram de ficar ainda mais confusos.
Em 2015, os astrônomos ficaram intrigados devido a uma série de eventos de perda de brilho rápidos e inexplicados vistos na estrela, enquanto ela estava sendo monitorada pelo Telescópio Espacial Kepler, da NASA.
Para tentar entendê-la melhor, os pesquisadores Josh Simon e Benjamin Shappee e seus colaboradores decidiram fazer uma análise mais longa, acompanhando suas mudanças desde 2006.
Os astrônomos pensavam que a estrela estava apenas brilhando mais fraca com o tempo, mas o novo estudo mostrou que ela também se iluminou significativamente em duas ocasiões, em 2007 e 2014. Esses episódios inesperados complicam ou descartam quase todas as ideias propostas para explicar a estranheza observada em KIC 8462852.
Até agora, os cientistas já tentaram explicar suas diminuições de brilho com diversas hipóteses, desde que a estrela engoliu um planeta próximo a um grupo invulgarmente grande de cometas a orbitando, incluindo até uma megaestrutura alienígena.
Em geral, as estrelas podem parecer escurecer por breves períodos porque um objeto sólido (como um planeta ou uma nuvem de poeira e gás) passa entre ela e o observador, eclipsando seu brilho por um tempo.
Mas mesmo antes dessa evidência de dois períodos de brilho aumentado no passado da estrela, os períodos erráticos de escurecimento vistos na KIC 8462852 eram diferentes de qualquer coisa que os astrônomos já haviam observado.
No ano passado, Simon e Ben Montet, que também é coautor deste estudo, descobriram que, de 2009 a 2012, a KIC 8462852 diminuiu em brilho quase 1%. Seu brilho caiu 2% ao longo de apenas seis meses, o que é impressionante, permanecendo nesse nível pelos últimos seis meses de observações de Kepler.
Examinando cerca de 11 anos de dados, os pesquisadores concluíram que a estrela continuou a diminuir de brilho de 2015 até agora, e está 1,5% mais fraca do que em fevereiro desse ano. Além do escurecimento que a estrela experimentou de 2009 a 2013 e de 2015 até hoje, ela sofreu os já mencionados dois períodos de brilho aumentado também.

E agora?
“Até este trabalho, pensávamos que as mudanças de luz da estrela só estavam ocorrendo em uma direção – escurecendo”, afirmou Simon. “A percepção de que a estrela às vezes fica mais brilhante além de períodos de escurecimento é incompatível com a maioria das hipóteses para explicar o seu comportamento estranho”.
Um próximo passo importante da pesquisa será determinar como a cor da estrela muda com o tempo, especialmente durante as breves quedas de brilho. Essa informação pode ajudar a restringir as possíveis explicações sobre por que essa estrela age da forma que age.
Por exemplo, se o escurecimento for causado por poeira que obscurece a visão da estrela para nós, então ela deve parecer ficar mais vermelha à medida que escurece. Mas se objetos grandes estão bloqueando sua luz, nenhuma mudança de cor seria vista.
“Ainda não resolvemos o mistério. Mas entender as mudanças de longo prazo da estrela é uma peça chave do quebra-cabeça”, concluiu Simon. [Phys]

13.510 – Propulsor quebra recordes e pode nos levar para Marte


íons
Um propulsor que está sendo desenvolvido para uma futura missão da NASA para Marte quebrou vários recordes durante seus testes, sugerindo que a tecnologia está no caminho para levar os humanos ao planeta vermelho nos próximos 20 anos, segundo membros da equipe do projeto.
O propulsor X3, projetado por pesquisadores da Universidade de Michigan, em cooperação com a NASA e a Força Aérea dos EUA, é um propulsor Hall – um sistema que impulsiona a espaçonave acelerando uma corrente de átomos eletricamente carregados, conhecidos como íons. Na recente demonstração realizada no Centro de Pesquisa Glenn da NASA, o X3 quebrou recordes do máximo de potência, impulso e corrente operacional alcançados por um hélice Hall até hoje, de acordo com a equipe de pesquisa da Universidade de Michigan e representantes da NASA.
“Nós mostramos que o X3 pode operar com mais de 100 kW de potência”, disse Alec Gallimore, que lidera o projeto, em entrevista ao site Space. “Ele funcionou em uma enorme variedade de energia de 5 kW a 102 kW, com corrente elétrica de até 260 amperes. Ele gerou 5,4 Newtons de impulso, que é o maior nível de impulso alcançado por qualquer propulsor de plasma até o momento”, acrescentou Gallimore, que é decano de engenharia da Universidade de Michigan. O recorde anterior era de 3,3 Newtons.

40 km por segundo
Os propulsores Hall e outros tipos de motores de íons usam eletricidade (geralmente gerada por painéis solares) para expelir o plasma – uma nuvem semelhante a gás de partículas carregadas – para fora de um bocal, gerando impulso. Esta técnica pode impulsionar a nave espacial a velocidades muito maiores do que os foguetes de propulsão química podem, de acordo com a NASA.
É por isso que os pesquisadores estão tão interessados ​​na aplicação potencial de propulsão iónica para viagens espaciais de longa distância. Considerando que a velocidade máxima que pode ser alcançada por um foguete químico é de cerca de 5 quilômetros por segundo, um propulsor Hall poderia levar uma embarcação até 40 quilômetros por segundo, diz Gallimore.

Os motores de íons também são conhecidos por ser mais eficientes do que os foguetes de potência química. Uma nave espacial com propulsão Hall levaria carga e astronautas para Marte usando muito menos material propulsor do que um foguete químico. Um propelente comum para propulsores de íons é o xenônio. A nave espacial Dawn da NASA, que atualmente está em órbita no planeta anão Ceres, usa esse gás.
Em busca de mais Watts

O ponto negativo dos propulsores de íons, no entanto, é que eles possuem um impulso muito baixo e, portanto, devem operar por um longo tempo para acelerar uma nave espacial a altas velocidades, de acordo com a NASA. Além disso, os propulsores de íons não são poderosos o suficiente para superar a atração gravitacional da Terra, portanto não podem ser usados ​​para lançar a nave espacial.

“Os sistemas de propulsão química podem gerar milhões de kilowatts de energia, enquanto os sistemas elétricos existentes só conseguem 3 a 4 quilowatts”, explica Gallimore. Os propulsores Hall comercialmente disponíveis não são poderosos o suficiente para impulsionar uma nave tripulada até marte, acrescentou.

“O que precisamos para a exploração humana é um sistema que pode processar algo como 500.000 watts (500 kW), ou mesmo um milhão de watts ou mais”, aponta Gallimore. “Isso é algo como 20, 30 ou mesmo 40 vezes o poder dos sistemas convencionais de propulsão elétrica”.

É aí que entra o X3. Gallimore e sua equipe estão abordando o problema da energia, tornando o propulsor maior do que esses outros sistemas e desenvolvendo um design que aborda uma das falhas da tecnologia. “Nós descobrimos que, em vez de ter um canal de plasma, onde o plasma gerado é esgotado do propulsor e produz impulso, teríamos vários canais no mesmo propulsor”, explica. “Nós chamamos isso de canal aninhado”.
De acordo com Gallimore, o uso de três canais permitiu que os engenheiros tornassem o X3 muito menor e mais compacto do que um propulsor de Hall de canal único equivalente deveria ser. A equipe da Universidade de Michigan vem trabalhando na tecnologia em cooperação com a Força Aérea desde 2009. Primeiro, os pesquisadores desenvolveram uma hélice de dois canais, o X2, antes de passar para o X3, mais poderoso e com três canais.
Em fevereiro de 2016, a equipe se associou ao fabricante de foguetes com sede na Califórnia Aerojet Rocketdyne, que está desenvolvendo um novo sistema de propulsão elétrica, chamado XR-100, para o programa NASA Next Space Technologies for Exploration Partnerships ou NextSTEP. O propulsor X3 é uma parte central do sistema XR-100.
Scott Hall, doutorando da Universidade de Michigan que trabalhou no projeto X3 nos últimos cinco anos, disse que o trabalho tem sido bastante desafiador devido ao tamanho do propulsor.
“É pesado – 227 quilos. Tem quase um metro de diâmetro”, diz Hall. “A maioria dos propulsores Hall são o tipo de coisa que uma ou duas pessoas podem pegar e carregar ao redor do laboratório. Precisamos de um guindaste para mover o X3”.
No próximo ano, a equipe executará um teste ainda maior, que visa provar que o propulsor pode operar a plena potência por 100 horas. Gallimore diz que os engenheiros também estão projetando um sistema especial de blindagem magnética que deixaria o plasma longe das paredes do propulsor para evitar danos e permitir que o propulsor funcione de forma confiável por períodos de tempo ainda mais longos. Gallimore diz que, sem a blindagem, uma versão de vôo X3 provavelmente começaria a ter problemas após várias mil horas de operações. Uma versão blindada magneticamente pode ser executada por vários anos com força total, segundo ele. [Space]

13.495 – EXPLOSÕES SOLARES GIGANTESCAS PIORARAM A SITUAÇÃO NO PLANETA


sol_erupcao
No último 6 de setembro, a NASA detectou a labareda solar mais poderosa dos últimos 12 anos, com uma intensidade de X9.3. Essa escala determina o tipo de fulguração por meio de uma letra, nesse caso “X”, utilizada para as erupções extremamente grandes; e um valor, que determina sua intensidade.
Quando ocorrem fulgurações desse tipo, a energia emanada do centro do disco solar consegue alcançar 1 trilhão de megatons de TNT. Isso é uma quinta parte da energia emitida pelo Sol em um único segundo e mais que toda a energia que o homem é capaz de produzir em 1 milhão de anos.
Atualmente, toda essa energia está “queimando” o campo magnético terrestre, no momento em que o planeta enfrenta uma nuvem de plasma solar que alcança um diâmetro de aproximadamente 100 milhões de quilômetros. Especialistas já previram o surgimento de auroras polares em cidades da Rússia e do Canadá.

13.488 – Nobel 2017 – Prêmio Nobel de Física vai para pesquisadores de buracos negros


nobel 2017
O Prêmio Nobel de Física deste ano foi dado aos cientistas Rainer Weiss, do Instituto de Tecnologia de Massachusetts, e Kip Thorne e Barry Barish, do Instituto de Tecnologia da Califórnia, pela descoberta de ondulações no espaço-tempo, conhecidas como ondas gravitacionais.
Essas “ondas” foram previstas por Albert Einstein um século atrás, mas não tinham sido detectadas diretamente até pouco tempo.
O Dr. Weiss receberá metade do prêmio de 9 milhões de coroas suecas (cerca de R$ 3,47 bilhões, no câmbio atual) e Dr. Thorne e Dr. Barish dividirão a outra metade.

A teoria
A importante descoberta aconteceu em fevereiro de 2016, quando uma colaboração internacional de físicos e astrônomos anunciou que haviam registrado ondas gravitacionais provenientes da colisão de um par de buracos negros maciços, a um bilhão de anos-luz de nós.
O trabalho validou uma previsão de longa data de Einstein. Em 1916, o físico propôs a teoria da relatividade geral, afirmando que o universo era como um tecido feito de espaço e tempo. Esse tecido podia se dobrar devido a objetos maciços, como estrelas e planetas.
Einstein também propôs que, quando dois objetos maciços interagem, eles podem criar uma ondulação no espaço-tempo. Tais ondulações deveriam ser detectáveis se pudéssemos construir instrumentos suficientemente sensíveis.

Os avanços
Weiss, Thorne e Barish foram os arquitetos e líderes do LIGO, o Observatório de Ondas Gravitacionais por Interferômetro Laser, o instrumento que finalmente foi capaz de detectar essas ondas. Mais de mil cientistas participaram de uma colaboração para analisar os dados do LIGO.
Tal instrumento permaneceu um sonho até a década de 1970. Foi nessa época que Rainer Weiss sugeriu um projeto que ele pensava poder detectar ondas gravitacionais. Suas ideias foram então traduzidas em realidade através de uma série de pesquisadores, incluindo Kip Thorne, Ronald Drever e Barry Barish, no que se tornaria o LIGO.
Muitas etapas, US$ 1 bilhão em gastos e 40 anos se passaram até que a versão mais avançada do observatório, lançada em setembro de 2015, finalmente capturou o primeiro sinal que significaria a abertura de todo um novo campo da astronomia.

13.465 – Pode estourar seu cartão de crédito, o fim do mundo está chegando


planeta x
Bricadeiras à parte, tal boato já dura mais de 10 séculos
Um tal David Meade afirmou em um livro que neste sábado (23-09) o mundo acaba com a chegada do famigerado Planeta X. Pela teoria de Meade, o planeta seria na verdade uma estrela com um sistema planetário ao seu redor e estaria vindo em direção à Terra. Além de planetas, o sistema traria também cometas e asteroides e esses seriam arremessados contra a Terra, o que causaria destruição em massa.
Para fechar, tudo com o conhecimento da NASA que, óbvio, estaria escondendo a verdade. As fontes da “pesquisa” de Meade são trechos da bíblia que ele interpreta como acha melhor para vender seu livro e sua ideia e, de acordo com ele, o último eclipse solar do dia 21 de agosto teria precipitado a chegada do Planeta X.
Volta e meia tem gente que vem esse papo: ora com Planeta X, ora com Hercóbulus, ora com o Planeta Chupão e o mais popular entre os conspiracionistas, o Nibiru. Claro, a NASA está sempre envolvida na parada escondendo tudo.
A imagem abaixo é apontada, inclusive, como sendo de Niburu, mas pode trocar por um dos assassinos listado acima. Na verdade não passa da estrela V838 Monocerotis iluminando gás e poeira ejetados numa explosão milhares de anos atrás. E ela está longe, muito longe, tipo… 20 mil anos luz de distância.
Não perca seu tempo e pague suas contas
Para ser direto, não perca seu tempo. Se você tem compromisso no domingo, pode ir, prova ou conta vencendo na segunda, pode continuar pagando ou estudando porque o mundo vai estar inteiro.
Há quem diga que, na antiga Mesopotâmia, já havia citações a todos esses elementos destruidores, mas dar contexto científico ao que parece ser mitologia mal traduzida é um pouco demais. Se um planeta ou uma estrela como essa estivesse nas proximidades do Sistema Solar, nós já teríamos descoberto. E nem adianta dizer que a NASA está acobertando, pois ela não tem controle sobre todos os astrônomos do mundo. Quem me dera se ela me pagasse o que volta e meia me acusam de estar recebendo para permanecer calado…
Os céus do globo são monitorados por vários programas de defesa para justamente avistar algum asteroide com potencial de atingir a Terra. Corpos celestes com mais de 100 metros de tamanho são razoavelmente fáceis de descobrir e os maiores que isso, portanto, muito mais perigosos, são muito fáceis de se encontrar. Não há como uma estrela, ou um planeta gigantesco passar despercebido pela frota de telescópios terrestres. Aliás, tem muito mais astrônomo amador monitorando o céu do que astrônomos profissionais. Como manter uma conspiração com centenas de milhares de pessoas no mundo todo?
Além dos telescópios em Terra, algumas missões espaciais já varreram o céu todo em busca de planetas e/ou anãs marrons mais distantes no Sistema Solar. Nenhuma dessas iniciativas deu resultado positivo. Nem sequer um caso suspeito foi encontrado. Até mesmo Mike Brown, que tem como objetivo de vida descobrir mais um planeta no Sistema Solar e vasculha o céu todo, ano após ano por uma década encontrou alguma coisa suspeita.
Desses planetas todos, o Planeta X é o único que aparece nos livros de astronomia. Quando Percival Lowell procurava pelo nono planeta do Sistema Solar, – que depois viria a ser Plutão; pelo menos, até 2006 – se referia a ele como ‘Planeta X’ para que ninguém desconfiasse do que se tratava. Ele sabia que havia outras pessoas fazendo o mesmo e quando enviava ao seu observatório novas coordenadas o tratava desse jeito: o ‘X’ nada mais é do que a variável ‘X’, a incógnita a ser encontrada, como em qualquer equação matemática.
O fim do mundo está mais próximo de acontecer por iniciativa própria, do que por um planeta, asteroide ou estrela desgarrada. Eu me preocupo mais com a Coreia do Norte do que com Nibiru. Ah, sim, e com as contas no fim do mês que vão chegar implacavelmente.

13.463 – Reservas de água congelada em Mercúrio medem o dobro da área de SP


cratera-mercurio-agua
Cientistas planetários da Universidade Brown, nos Estados Unidos, acabam de publicar um artigo cujos resultados, à primeira vista, podem parecer peculiares. Eles descobriram que a quantidade de gelo presente na superfície de Mercúrio é muito maior do que se pensava.
Mas como pode um planeta tão próximo do Sol apresentar temperaturas tão baixas a ponto de permitir que a água se mantenha em estado sólido?
Basta saber onde procurar. Como não há atmosfera para reter o calor, certas regiões que ficam sempre nas sombras, como os fundos de crateras, são congelantes o bastante. Se essas áreas nas quais a luz não chega estiverem nos polos, onde a incidência de radiação é menor, temos o lugar perfeito para se encontrar água congelada.
Foi em uma dessas regiões, no polo norte do planetinha só 40% maior do que a Lua, que os pesquisadores acharam três grandes lençóis de gelo, em volta dos quais existem diversas reservas com dimensões menores.
“Adicionando esses depósitos de menor escala aos depósitos maiores dentro das crateras, acrescenta-se significativamente ao inventário de gelo superficial em Mercúrio”, disse em comunicado Ariel Deutsch, líder do estudo.

Dados de sonda da Nasa
A pesquisa publicada no periódico Geophysical Research Letters foi feita em parceria com o orientador de doutorado de Deutsch, Jim Head, e Gregory Neumann, do centro Goddard da Nasa. O trio analisou dados coletados em Mercúrio por um dos instrumentos da sonda MESSENGER, que media com laser a refletividade da superfície.
Regiões brilhantes sugerem a presença de gelo, já que o relevo rochoso é mais escuro por refletir menos luz.
Com essas informações, os pesquisadores estimaram a área combinada dos três grandes reservatórios em 3,4 mil quilômetros quadrados — pouco mais de duas vezes a área da cidade de São Paulo.
No terreno em volta das crateras, a baixa resolução do instrumento só permitiu identificar outros quatro depósitos com cerca de cinco quilômetros de diâmetro, mas a equipe afirma que o padrão de refletividade da região como um todo sugere a presença de um grande número de pequenos depósitos.

Água por toda parte
“Achamos que provavelmente existem muitos, muitos mais destes, com tamanhos variando de um quilômetro até poucos centímetros”, diz Deutsch. A situação é semelhante com a verificada na Lua, onde também há abundância de gelo nos polos.
Mas, em primeiro lugar, como essa água toda foi parar em Mercúrio? Há duas hipóteses: teria sido trazida por cometas e asteroides, ou pode ter se formado no próprio solo, a partir de reações químicas entre o oxigênio e o hidrogênio injetado na superfície através do vento solar.
A pesquisa pode ajudar a solucionar o mistério. “Uma das maiores coisas que queremos entender é como a água e outros voláteis estão distribuídos pelo Sistema Solar interior — incluindo a Terra, a Lua e nossos vizinhos planetários”, diz o coautor Jim Head. “Esse estudo abre nossos olhos a novos lugares para se procurar por evidência de água e sugere que existe muito mais dela em Mercúrio do que pensávamos.”

16.382 – O que é uma tempestade solar e como ela afeta a Terra


tempestadesolarnasa
O Sol não é só uma estrela que influencia os planetas ao seu redor, ele também é um corpo em constante variação, com explosões violentas de radiação, e um exímio formador de energia em quantidades absurdas para os padrões terrestres.
Sua massa — de cerca de 330 mil vezes a da Terra — corresponde a 99,86% da massa do Sistema Solar. O apelido de Astro Rei não é mera força de expressão. Essa esfera gigante é composta, basicamente por Hidrogênio e Hélio, sendo que 3/4 de seu total é reservado ao primeiro elemento. Menos de 2% de sua composição consiste em elementos pesados, como oxigênio e carbono.
Diferente dos planetas que são considerados rochosos, como a Terra e Marte, ou gasosos, como Saturno e Júpiter, nossa fonte de calor é formada por plasma, gasoso na superfície e mais denso conforme se proxima do núcleo.
É exatamente ali, em seu coração, sob uma temperatura de 15 milhões de graus centígrados, que as reações químicas nucleares mais selvagens acontecem. São até 600 milhões de toneladas de hidrogênio convertidos em hélio por segundo. A diferença da massa dos dois elementos é expelida em forma de energia. Para sair do núcleo e chegar até a superfície da estrela, essa energia leva até um milhão de anos — um constraste bem grande com o tempo que as partículas do Sol levam para chegar até a Terra: 8 minutos.
Por isso, a camada mais externa do Sol, a Coroa, está sempre se expandindo, criando os ventos solares, por isso o nome “ejeções de massa coronal”. Quando explosões de grandes proporções acontecem nessa área, partículas solares são liberadas.
Os astrônomos estimam que o nosso Sol tenha 4,5 bilhões de anos.Considerando que uma estrela desta grandeza mantém seu brilho por até 10 bilhões de anos, ainda teremos muito com o que nos preocupar.

Os efeitos na Terra
Os aparelhos tecnológicos que usamos na Terra sofrem grande influência do clima espacial. Aparelhos como GPS e comunicadores que dependem de frequência de rádio, como aviões, podem ser impactados por estes presentes do Sol.
Em 1859, uma das maiores ejeções já lançadas pelo Sol atingiu o campo magnético da Terra, causando o colapso dos serviços telegráficos. Como dependemos muito mais da energia elétrica agora, se isso tivesse acontecido hoje os estragos poderiam ter sido maiores.
Na história, nenhuma tempestade solar jamais afetou uma missão espacial tripulada. Mas, em 1972, a NASA registrou rajadas solares que poderiam matar um ser humano desprotegido do campo magnético da Terra durante as missões Apollo 16 e 17.
Mas, calma, a NASA está sempre atenta às atividades solares. A agência espacial garante que mantém uma frota de naves heliofísicas que monitoram o ambiente espacial entre o Sol e a Terra. Além disso, existem eventos naturais impressionantes e maravilhosos só acontecem graças à influência do Sol, como a aurora boreal e a austral, que são o efeito mais visível do Astro Rei em nosso mundo.