13.511 – A estrela mais misteriosa da galáxia continua confundindo cientistas


estrela-KIC-8462852
A estrela chamada KIC 8462852 já causou bastante agitação na comunidade científica, mas não vai ser desta vez (ainda) que solucionaremos seus mistérios.
Na verdade, eles acabaram de ficar ainda mais confusos.
Em 2015, os astrônomos ficaram intrigados devido a uma série de eventos de perda de brilho rápidos e inexplicados vistos na estrela, enquanto ela estava sendo monitorada pelo Telescópio Espacial Kepler, da NASA.
Para tentar entendê-la melhor, os pesquisadores Josh Simon e Benjamin Shappee e seus colaboradores decidiram fazer uma análise mais longa, acompanhando suas mudanças desde 2006.
Os astrônomos pensavam que a estrela estava apenas brilhando mais fraca com o tempo, mas o novo estudo mostrou que ela também se iluminou significativamente em duas ocasiões, em 2007 e 2014. Esses episódios inesperados complicam ou descartam quase todas as ideias propostas para explicar a estranheza observada em KIC 8462852.
Até agora, os cientistas já tentaram explicar suas diminuições de brilho com diversas hipóteses, desde que a estrela engoliu um planeta próximo a um grupo invulgarmente grande de cometas a orbitando, incluindo até uma megaestrutura alienígena.
Em geral, as estrelas podem parecer escurecer por breves períodos porque um objeto sólido (como um planeta ou uma nuvem de poeira e gás) passa entre ela e o observador, eclipsando seu brilho por um tempo.
Mas mesmo antes dessa evidência de dois períodos de brilho aumentado no passado da estrela, os períodos erráticos de escurecimento vistos na KIC 8462852 eram diferentes de qualquer coisa que os astrônomos já haviam observado.
No ano passado, Simon e Ben Montet, que também é coautor deste estudo, descobriram que, de 2009 a 2012, a KIC 8462852 diminuiu em brilho quase 1%. Seu brilho caiu 2% ao longo de apenas seis meses, o que é impressionante, permanecendo nesse nível pelos últimos seis meses de observações de Kepler.
Examinando cerca de 11 anos de dados, os pesquisadores concluíram que a estrela continuou a diminuir de brilho de 2015 até agora, e está 1,5% mais fraca do que em fevereiro desse ano. Além do escurecimento que a estrela experimentou de 2009 a 2013 e de 2015 até hoje, ela sofreu os já mencionados dois períodos de brilho aumentado também.

E agora?
“Até este trabalho, pensávamos que as mudanças de luz da estrela só estavam ocorrendo em uma direção – escurecendo”, afirmou Simon. “A percepção de que a estrela às vezes fica mais brilhante além de períodos de escurecimento é incompatível com a maioria das hipóteses para explicar o seu comportamento estranho”.
Um próximo passo importante da pesquisa será determinar como a cor da estrela muda com o tempo, especialmente durante as breves quedas de brilho. Essa informação pode ajudar a restringir as possíveis explicações sobre por que essa estrela age da forma que age.
Por exemplo, se o escurecimento for causado por poeira que obscurece a visão da estrela para nós, então ela deve parecer ficar mais vermelha à medida que escurece. Mas se objetos grandes estão bloqueando sua luz, nenhuma mudança de cor seria vista.
“Ainda não resolvemos o mistério. Mas entender as mudanças de longo prazo da estrela é uma peça chave do quebra-cabeça”, concluiu Simon. [Phys]

Anúncios

13.510 – Propulsor quebra recordes e pode nos levar para Marte


íons
Um propulsor que está sendo desenvolvido para uma futura missão da NASA para Marte quebrou vários recordes durante seus testes, sugerindo que a tecnologia está no caminho para levar os humanos ao planeta vermelho nos próximos 20 anos, segundo membros da equipe do projeto.
O propulsor X3, projetado por pesquisadores da Universidade de Michigan, em cooperação com a NASA e a Força Aérea dos EUA, é um propulsor Hall – um sistema que impulsiona a espaçonave acelerando uma corrente de átomos eletricamente carregados, conhecidos como íons. Na recente demonstração realizada no Centro de Pesquisa Glenn da NASA, o X3 quebrou recordes do máximo de potência, impulso e corrente operacional alcançados por um hélice Hall até hoje, de acordo com a equipe de pesquisa da Universidade de Michigan e representantes da NASA.
“Nós mostramos que o X3 pode operar com mais de 100 kW de potência”, disse Alec Gallimore, que lidera o projeto, em entrevista ao site Space. “Ele funcionou em uma enorme variedade de energia de 5 kW a 102 kW, com corrente elétrica de até 260 amperes. Ele gerou 5,4 Newtons de impulso, que é o maior nível de impulso alcançado por qualquer propulsor de plasma até o momento”, acrescentou Gallimore, que é decano de engenharia da Universidade de Michigan. O recorde anterior era de 3,3 Newtons.

40 km por segundo
Os propulsores Hall e outros tipos de motores de íons usam eletricidade (geralmente gerada por painéis solares) para expelir o plasma – uma nuvem semelhante a gás de partículas carregadas – para fora de um bocal, gerando impulso. Esta técnica pode impulsionar a nave espacial a velocidades muito maiores do que os foguetes de propulsão química podem, de acordo com a NASA.
É por isso que os pesquisadores estão tão interessados ​​na aplicação potencial de propulsão iónica para viagens espaciais de longa distância. Considerando que a velocidade máxima que pode ser alcançada por um foguete químico é de cerca de 5 quilômetros por segundo, um propulsor Hall poderia levar uma embarcação até 40 quilômetros por segundo, diz Gallimore.

Os motores de íons também são conhecidos por ser mais eficientes do que os foguetes de potência química. Uma nave espacial com propulsão Hall levaria carga e astronautas para Marte usando muito menos material propulsor do que um foguete químico. Um propelente comum para propulsores de íons é o xenônio. A nave espacial Dawn da NASA, que atualmente está em órbita no planeta anão Ceres, usa esse gás.
Em busca de mais Watts

O ponto negativo dos propulsores de íons, no entanto, é que eles possuem um impulso muito baixo e, portanto, devem operar por um longo tempo para acelerar uma nave espacial a altas velocidades, de acordo com a NASA. Além disso, os propulsores de íons não são poderosos o suficiente para superar a atração gravitacional da Terra, portanto não podem ser usados ​​para lançar a nave espacial.

“Os sistemas de propulsão química podem gerar milhões de kilowatts de energia, enquanto os sistemas elétricos existentes só conseguem 3 a 4 quilowatts”, explica Gallimore. Os propulsores Hall comercialmente disponíveis não são poderosos o suficiente para impulsionar uma nave tripulada até marte, acrescentou.

“O que precisamos para a exploração humana é um sistema que pode processar algo como 500.000 watts (500 kW), ou mesmo um milhão de watts ou mais”, aponta Gallimore. “Isso é algo como 20, 30 ou mesmo 40 vezes o poder dos sistemas convencionais de propulsão elétrica”.

É aí que entra o X3. Gallimore e sua equipe estão abordando o problema da energia, tornando o propulsor maior do que esses outros sistemas e desenvolvendo um design que aborda uma das falhas da tecnologia. “Nós descobrimos que, em vez de ter um canal de plasma, onde o plasma gerado é esgotado do propulsor e produz impulso, teríamos vários canais no mesmo propulsor”, explica. “Nós chamamos isso de canal aninhado”.
De acordo com Gallimore, o uso de três canais permitiu que os engenheiros tornassem o X3 muito menor e mais compacto do que um propulsor de Hall de canal único equivalente deveria ser. A equipe da Universidade de Michigan vem trabalhando na tecnologia em cooperação com a Força Aérea desde 2009. Primeiro, os pesquisadores desenvolveram uma hélice de dois canais, o X2, antes de passar para o X3, mais poderoso e com três canais.
Em fevereiro de 2016, a equipe se associou ao fabricante de foguetes com sede na Califórnia Aerojet Rocketdyne, que está desenvolvendo um novo sistema de propulsão elétrica, chamado XR-100, para o programa NASA Next Space Technologies for Exploration Partnerships ou NextSTEP. O propulsor X3 é uma parte central do sistema XR-100.
Scott Hall, doutorando da Universidade de Michigan que trabalhou no projeto X3 nos últimos cinco anos, disse que o trabalho tem sido bastante desafiador devido ao tamanho do propulsor.
“É pesado – 227 quilos. Tem quase um metro de diâmetro”, diz Hall. “A maioria dos propulsores Hall são o tipo de coisa que uma ou duas pessoas podem pegar e carregar ao redor do laboratório. Precisamos de um guindaste para mover o X3”.
No próximo ano, a equipe executará um teste ainda maior, que visa provar que o propulsor pode operar a plena potência por 100 horas. Gallimore diz que os engenheiros também estão projetando um sistema especial de blindagem magnética que deixaria o plasma longe das paredes do propulsor para evitar danos e permitir que o propulsor funcione de forma confiável por períodos de tempo ainda mais longos. Gallimore diz que, sem a blindagem, uma versão de vôo X3 provavelmente começaria a ter problemas após várias mil horas de operações. Uma versão blindada magneticamente pode ser executada por vários anos com força total, segundo ele. [Space]

13.495 – EXPLOSÕES SOLARES GIGANTESCAS PIORARAM A SITUAÇÃO NO PLANETA


sol_erupcao
No último 6 de setembro, a NASA detectou a labareda solar mais poderosa dos últimos 12 anos, com uma intensidade de X9.3. Essa escala determina o tipo de fulguração por meio de uma letra, nesse caso “X”, utilizada para as erupções extremamente grandes; e um valor, que determina sua intensidade.
Quando ocorrem fulgurações desse tipo, a energia emanada do centro do disco solar consegue alcançar 1 trilhão de megatons de TNT. Isso é uma quinta parte da energia emitida pelo Sol em um único segundo e mais que toda a energia que o homem é capaz de produzir em 1 milhão de anos.
Atualmente, toda essa energia está “queimando” o campo magnético terrestre, no momento em que o planeta enfrenta uma nuvem de plasma solar que alcança um diâmetro de aproximadamente 100 milhões de quilômetros. Especialistas já previram o surgimento de auroras polares em cidades da Rússia e do Canadá.

13.488 – Nobel 2017 – Prêmio Nobel de Física vai para pesquisadores de buracos negros


nobel 2017
O Prêmio Nobel de Física deste ano foi dado aos cientistas Rainer Weiss, do Instituto de Tecnologia de Massachusetts, e Kip Thorne e Barry Barish, do Instituto de Tecnologia da Califórnia, pela descoberta de ondulações no espaço-tempo, conhecidas como ondas gravitacionais.
Essas “ondas” foram previstas por Albert Einstein um século atrás, mas não tinham sido detectadas diretamente até pouco tempo.
O Dr. Weiss receberá metade do prêmio de 9 milhões de coroas suecas (cerca de R$ 3,47 bilhões, no câmbio atual) e Dr. Thorne e Dr. Barish dividirão a outra metade.

A teoria
A importante descoberta aconteceu em fevereiro de 2016, quando uma colaboração internacional de físicos e astrônomos anunciou que haviam registrado ondas gravitacionais provenientes da colisão de um par de buracos negros maciços, a um bilhão de anos-luz de nós.
O trabalho validou uma previsão de longa data de Einstein. Em 1916, o físico propôs a teoria da relatividade geral, afirmando que o universo era como um tecido feito de espaço e tempo. Esse tecido podia se dobrar devido a objetos maciços, como estrelas e planetas.
Einstein também propôs que, quando dois objetos maciços interagem, eles podem criar uma ondulação no espaço-tempo. Tais ondulações deveriam ser detectáveis se pudéssemos construir instrumentos suficientemente sensíveis.

Os avanços
Weiss, Thorne e Barish foram os arquitetos e líderes do LIGO, o Observatório de Ondas Gravitacionais por Interferômetro Laser, o instrumento que finalmente foi capaz de detectar essas ondas. Mais de mil cientistas participaram de uma colaboração para analisar os dados do LIGO.
Tal instrumento permaneceu um sonho até a década de 1970. Foi nessa época que Rainer Weiss sugeriu um projeto que ele pensava poder detectar ondas gravitacionais. Suas ideias foram então traduzidas em realidade através de uma série de pesquisadores, incluindo Kip Thorne, Ronald Drever e Barry Barish, no que se tornaria o LIGO.
Muitas etapas, US$ 1 bilhão em gastos e 40 anos se passaram até que a versão mais avançada do observatório, lançada em setembro de 2015, finalmente capturou o primeiro sinal que significaria a abertura de todo um novo campo da astronomia.

13.465 – Pode estourar seu cartão de crédito, o fim do mundo está chegando


planeta x
Bricadeiras à parte, tal boato já dura mais de 10 séculos
Um tal David Meade afirmou em um livro que neste sábado (23-09) o mundo acaba com a chegada do famigerado Planeta X. Pela teoria de Meade, o planeta seria na verdade uma estrela com um sistema planetário ao seu redor e estaria vindo em direção à Terra. Além de planetas, o sistema traria também cometas e asteroides e esses seriam arremessados contra a Terra, o que causaria destruição em massa.
Para fechar, tudo com o conhecimento da NASA que, óbvio, estaria escondendo a verdade. As fontes da “pesquisa” de Meade são trechos da bíblia que ele interpreta como acha melhor para vender seu livro e sua ideia e, de acordo com ele, o último eclipse solar do dia 21 de agosto teria precipitado a chegada do Planeta X.
Volta e meia tem gente que vem esse papo: ora com Planeta X, ora com Hercóbulus, ora com o Planeta Chupão e o mais popular entre os conspiracionistas, o Nibiru. Claro, a NASA está sempre envolvida na parada escondendo tudo.
A imagem abaixo é apontada, inclusive, como sendo de Niburu, mas pode trocar por um dos assassinos listado acima. Na verdade não passa da estrela V838 Monocerotis iluminando gás e poeira ejetados numa explosão milhares de anos atrás. E ela está longe, muito longe, tipo… 20 mil anos luz de distância.
Não perca seu tempo e pague suas contas
Para ser direto, não perca seu tempo. Se você tem compromisso no domingo, pode ir, prova ou conta vencendo na segunda, pode continuar pagando ou estudando porque o mundo vai estar inteiro.
Há quem diga que, na antiga Mesopotâmia, já havia citações a todos esses elementos destruidores, mas dar contexto científico ao que parece ser mitologia mal traduzida é um pouco demais. Se um planeta ou uma estrela como essa estivesse nas proximidades do Sistema Solar, nós já teríamos descoberto. E nem adianta dizer que a NASA está acobertando, pois ela não tem controle sobre todos os astrônomos do mundo. Quem me dera se ela me pagasse o que volta e meia me acusam de estar recebendo para permanecer calado…
Os céus do globo são monitorados por vários programas de defesa para justamente avistar algum asteroide com potencial de atingir a Terra. Corpos celestes com mais de 100 metros de tamanho são razoavelmente fáceis de descobrir e os maiores que isso, portanto, muito mais perigosos, são muito fáceis de se encontrar. Não há como uma estrela, ou um planeta gigantesco passar despercebido pela frota de telescópios terrestres. Aliás, tem muito mais astrônomo amador monitorando o céu do que astrônomos profissionais. Como manter uma conspiração com centenas de milhares de pessoas no mundo todo?
Além dos telescópios em Terra, algumas missões espaciais já varreram o céu todo em busca de planetas e/ou anãs marrons mais distantes no Sistema Solar. Nenhuma dessas iniciativas deu resultado positivo. Nem sequer um caso suspeito foi encontrado. Até mesmo Mike Brown, que tem como objetivo de vida descobrir mais um planeta no Sistema Solar e vasculha o céu todo, ano após ano por uma década encontrou alguma coisa suspeita.
Desses planetas todos, o Planeta X é o único que aparece nos livros de astronomia. Quando Percival Lowell procurava pelo nono planeta do Sistema Solar, – que depois viria a ser Plutão; pelo menos, até 2006 – se referia a ele como ‘Planeta X’ para que ninguém desconfiasse do que se tratava. Ele sabia que havia outras pessoas fazendo o mesmo e quando enviava ao seu observatório novas coordenadas o tratava desse jeito: o ‘X’ nada mais é do que a variável ‘X’, a incógnita a ser encontrada, como em qualquer equação matemática.
O fim do mundo está mais próximo de acontecer por iniciativa própria, do que por um planeta, asteroide ou estrela desgarrada. Eu me preocupo mais com a Coreia do Norte do que com Nibiru. Ah, sim, e com as contas no fim do mês que vão chegar implacavelmente.

13.463 – Reservas de água congelada em Mercúrio medem o dobro da área de SP


cratera-mercurio-agua
Cientistas planetários da Universidade Brown, nos Estados Unidos, acabam de publicar um artigo cujos resultados, à primeira vista, podem parecer peculiares. Eles descobriram que a quantidade de gelo presente na superfície de Mercúrio é muito maior do que se pensava.
Mas como pode um planeta tão próximo do Sol apresentar temperaturas tão baixas a ponto de permitir que a água se mantenha em estado sólido?
Basta saber onde procurar. Como não há atmosfera para reter o calor, certas regiões que ficam sempre nas sombras, como os fundos de crateras, são congelantes o bastante. Se essas áreas nas quais a luz não chega estiverem nos polos, onde a incidência de radiação é menor, temos o lugar perfeito para se encontrar água congelada.
Foi em uma dessas regiões, no polo norte do planetinha só 40% maior do que a Lua, que os pesquisadores acharam três grandes lençóis de gelo, em volta dos quais existem diversas reservas com dimensões menores.
“Adicionando esses depósitos de menor escala aos depósitos maiores dentro das crateras, acrescenta-se significativamente ao inventário de gelo superficial em Mercúrio”, disse em comunicado Ariel Deutsch, líder do estudo.

Dados de sonda da Nasa
A pesquisa publicada no periódico Geophysical Research Letters foi feita em parceria com o orientador de doutorado de Deutsch, Jim Head, e Gregory Neumann, do centro Goddard da Nasa. O trio analisou dados coletados em Mercúrio por um dos instrumentos da sonda MESSENGER, que media com laser a refletividade da superfície.
Regiões brilhantes sugerem a presença de gelo, já que o relevo rochoso é mais escuro por refletir menos luz.
Com essas informações, os pesquisadores estimaram a área combinada dos três grandes reservatórios em 3,4 mil quilômetros quadrados — pouco mais de duas vezes a área da cidade de São Paulo.
No terreno em volta das crateras, a baixa resolução do instrumento só permitiu identificar outros quatro depósitos com cerca de cinco quilômetros de diâmetro, mas a equipe afirma que o padrão de refletividade da região como um todo sugere a presença de um grande número de pequenos depósitos.

Água por toda parte
“Achamos que provavelmente existem muitos, muitos mais destes, com tamanhos variando de um quilômetro até poucos centímetros”, diz Deutsch. A situação é semelhante com a verificada na Lua, onde também há abundância de gelo nos polos.
Mas, em primeiro lugar, como essa água toda foi parar em Mercúrio? Há duas hipóteses: teria sido trazida por cometas e asteroides, ou pode ter se formado no próprio solo, a partir de reações químicas entre o oxigênio e o hidrogênio injetado na superfície através do vento solar.
A pesquisa pode ajudar a solucionar o mistério. “Uma das maiores coisas que queremos entender é como a água e outros voláteis estão distribuídos pelo Sistema Solar interior — incluindo a Terra, a Lua e nossos vizinhos planetários”, diz o coautor Jim Head. “Esse estudo abre nossos olhos a novos lugares para se procurar por evidência de água e sugere que existe muito mais dela em Mercúrio do que pensávamos.”

16.382 – O que é uma tempestade solar e como ela afeta a Terra


tempestadesolarnasa
O Sol não é só uma estrela que influencia os planetas ao seu redor, ele também é um corpo em constante variação, com explosões violentas de radiação, e um exímio formador de energia em quantidades absurdas para os padrões terrestres.
Sua massa — de cerca de 330 mil vezes a da Terra — corresponde a 99,86% da massa do Sistema Solar. O apelido de Astro Rei não é mera força de expressão. Essa esfera gigante é composta, basicamente por Hidrogênio e Hélio, sendo que 3/4 de seu total é reservado ao primeiro elemento. Menos de 2% de sua composição consiste em elementos pesados, como oxigênio e carbono.
Diferente dos planetas que são considerados rochosos, como a Terra e Marte, ou gasosos, como Saturno e Júpiter, nossa fonte de calor é formada por plasma, gasoso na superfície e mais denso conforme se proxima do núcleo.
É exatamente ali, em seu coração, sob uma temperatura de 15 milhões de graus centígrados, que as reações químicas nucleares mais selvagens acontecem. São até 600 milhões de toneladas de hidrogênio convertidos em hélio por segundo. A diferença da massa dos dois elementos é expelida em forma de energia. Para sair do núcleo e chegar até a superfície da estrela, essa energia leva até um milhão de anos — um constraste bem grande com o tempo que as partículas do Sol levam para chegar até a Terra: 8 minutos.
Por isso, a camada mais externa do Sol, a Coroa, está sempre se expandindo, criando os ventos solares, por isso o nome “ejeções de massa coronal”. Quando explosões de grandes proporções acontecem nessa área, partículas solares são liberadas.
Os astrônomos estimam que o nosso Sol tenha 4,5 bilhões de anos.Considerando que uma estrela desta grandeza mantém seu brilho por até 10 bilhões de anos, ainda teremos muito com o que nos preocupar.

Os efeitos na Terra
Os aparelhos tecnológicos que usamos na Terra sofrem grande influência do clima espacial. Aparelhos como GPS e comunicadores que dependem de frequência de rádio, como aviões, podem ser impactados por estes presentes do Sol.
Em 1859, uma das maiores ejeções já lançadas pelo Sol atingiu o campo magnético da Terra, causando o colapso dos serviços telegráficos. Como dependemos muito mais da energia elétrica agora, se isso tivesse acontecido hoje os estragos poderiam ter sido maiores.
Na história, nenhuma tempestade solar jamais afetou uma missão espacial tripulada. Mas, em 1972, a NASA registrou rajadas solares que poderiam matar um ser humano desprotegido do campo magnético da Terra durante as missões Apollo 16 e 17.
Mas, calma, a NASA está sempre atenta às atividades solares. A agência espacial garante que mantém uma frota de naves heliofísicas que monitoram o ambiente espacial entre o Sol e a Terra. Além disso, existem eventos naturais impressionantes e maravilhosos só acontecem graças à influência do Sol, como a aurora boreal e a austral, que são o efeito mais visível do Astro Rei em nosso mundo.

13.280 – Missão da NASA que “tocará o Sol” faz homenagem a astrofísico lendário


sol
Em anúncio realizado, diretores da NASA decidiram batizar a primeira missão que explorará mais detalhes do Sol com o nome do astrofísico Eugene Parker, responsável pelos primeiros estudos sobre como os campos magnéticos e partículas solares influenciam os planetas do Sistema Solar. O evento organizado pela agência espacial norte-americana aconteceu no auditório da Universidade de Chicago, onde Parker é professor emérito do Departamento de Astronomia e Física.
Thomas Zurbuchen, um dos diretores da NASA, afirmou que essa é a primeira vez que a agência batiza uma missão com o nome de alguém que ainda está vivo – Parker, que iniciou seu estudo sobre o Sol na década de 1950, completará 90 anos de idade no próximo dia 10 de junho.
Em 1958, o astrofísico publicou um artigo com as primeiras investigações a respeito de um fenônemo que ficaria conhecido como vento solar: em sua pesquisa, Parker estudou o comportamento da emissão de partículas e de eletromagnetismo que “escapa” da coroa solar, região conhecida como a “atmosfera externa” do Sol, onde as temperaturas são superiores à própria superfície solar. Ao longo de seu trabalho, o cientista analisou a interação da expansão da coroa solar e de sua relação com os planetas.
Na missão planejada pela NASA, a nave que será desenvolvida precisará lidar com temperaturas altíssimas e radiação em um nível que nenhuma outra precisou lidar. A ideia é que ela traga informações que nos ajudem a prever tempestades solares e a revelar os segredos da nossa estrela mais próxima.
A pequena nave treinará na órbita de Vênus por sete anos antes de ficar a seis milhões de quilômetros da superfície do Sol. Parece meio longe, mas é o suficiente para rastrear os campos magnéticos e analisar algumas partículas solares sem derreter por completo. A missão será lançada em 2018.

13.264 – Astronomia – Estrela da ‘megaestrutura alienígena’ volta a piscar


alx_estrela-misteriosa-20151123-001_original1
Astrônomos de todo o planeta se mobilizaram neste fim de semana, após detectarem que a estrela KIC 8462852, responsável pela emissão de uma luz misteriosa, voltou a piscar. Os cientistas apontaram seus telescópios para o corpo celeste, localizado a cerca de 1.500 anos-luz de distância (cada ano-luz equivale a 9,46 trilhões de quilômetros) da Terra, entre as constelações de Cisne e Lira, na esperança de, pela primeira vez, acompanhar a atividade da estrela em tempo real. Com isso, pretendem obter novas evidências que ajudem a decifrar os padrões incomuns de seu brilho.
A KIC 8462852, descoberta em 2011, exibe uma luz tão bizarra que, em 2015, os cientistas chegaram à conclusão de que a explicação científica mais plausível para seu comportamento seria uma incrível megaestrutura construída por alienígenas. A hipótese – levada a sério pelos astrônomos – foi levantada por pesquisadores liderados por Tabetha Boyajian, da Universidade de Yale, nos Estados Unidos, e pelo astrônomo Jason Wright, da Universidade Penn State. Por Tabetha estar à frente dos estudos, a estrela também recebe o nome de “Tabby’s Star”, ou Estrela de Tabby, na tradução em português.
Meses depois, cientistas da Nasa, afirmaram que um ‘enxame’ de cometas poderia estar por trás dos padrões incomuns do brilho da estrela: uma família deles estaria viajando em órbitas longas e bastante excêntricas a seu redor, causando estranha luminosidade. A ideia da estrutura construída por extraterrestres, no entanto, não foi descartada.
O maior enigma da Estrela de Tabby, segundo os astrônomos, é a grande diminuição de seu brilho, entre 15% e 25% – o mais comum é que esse número esteja entre 1% e 2%.
Em setembro de 2015, um artigo no periódico Monthly Notices of the Royal Astronomical Society descreveu a KIC 8462852, estrela observada pelo telescópio Kepler, o mais competente caçador de planetas fora do Sistema Solar, lançado em 2009. As lentes do poderoso instrumento captam o brilho das estrelas – quando há uma diminuição padronizada da luz emitida por elas, isso significa que algo está passando entre a estrela e o telescópio. Na maior parte das vezes, é um planeta (que costuma ter tamanho intermediário entre a Terra e Netuno). No entanto, a KIC 8462852 emitia um padrão luminoso inédito. Normalmente, quando um planeta passa por uma estrela, seu brilho diminui entre 1% e 2%. Mas, durante os quatro anos de observações do Kepler, a luz de KIC 8462852 diminuiu entre 15% e 25%, e em intervalos aleatórios. Ela tem 1,5 vezes o tamanho do Sol e, para escurecê-la dessa forma, seria necessário um objeto muito grande – bem maior que um planeta.
Após descartarem várias explicações, os cientistas passaram a considerar a hipótese de que o comportamento bizarro da estrela poderia ser consequência de uma incrível estrutura construída por alienígenas para captar a energia da estrela, chamada Esfera de Dyson (por ter sido proposta em 1960 pelo físico britânico Freeman Dyson). Ela seria composta por gigantescos painéis solares que, aos poucos, bloqueariam o brilho do corpo celeste. Em novembro do mesmo ano, o astrônomo Massimo Marengo, da Universidade do Estado de Iowa, nos Estados Unidos, afirmou que o padrão incomum poderia ser causado por cometas gelados que estariam rodeando a estrela e causando a sombra misteriosa – mas a nova explicação não foi suficiente para invalidar a hipótese da megaestrutura.
No fim da última sexta-feira, o Instituto de Astrofísica das Canárias, deu o alerta da atividade da estrela – ela estaria novamente se apagando e teria reduzido seu brilho em 2%. Com as novas observações, os cientistas pretendem recolher mais dados sobre a luz de KIC 8462852, que dariam suporte ou descartariam as hipóteses sobre as explicações de seu brilho.

13.248 – Física – Teorias da Viagem no Tempo


viagem no tempo
Buracos negros: Alguns cientistas afirmam que os buracos negros permitirão viajar no tempo ou a universos paralelos. Sua curvatura espaço-temporal poderá funcionar como um portal interdimensional.

A rosquinha: O cientista israelense Amos Ori acredita que, nos próximos séculos, a humanidade será capaz de construir uma máquina do tempo que poderá curvar o espaço como um donut e permitir o salto a outras épocas.

Cordas cósmicas: Essa hipótese diz que a matéria é, na verdade, um estado vibracional, cuja manipulação permitirá fazer viagens no tempo e no espaço.

Cilindro de Tipler: O físico Frank J. Tipler desenvolveu, em 1974, uma teoria segundo a qual seria possível viajar no tempo através de um cilindro de alta densidade e capaz de girar à velocidade da luz.

Matéria exótica: É considerada matéria exótica a matéria que não obedece a uma ou mais leis da física clássica. Alguns cientistas acreditam que essas partículas permitiriam viagens no tempo ao possibilitar mudanças na relação espaço-tempo.

13.069 -Nó na Mente – O que existia antes do Big Bang?


universo-de-duvidas
Universo de Dúvidas

Será que algum dia saberemos o que aconteceu antes do Big Bang? Esta não é uma questão apenas filosófica: há alguns aspectos que podem vir a ser cientificamente testados.
Por muito tempo o homem achou que o Universo – por definição, tudo que tem existência física – era de idade infinita, ou com uma idade que poderia ser medida em gerações humanas, como contado por muitas mitologias. Porém, graças aos estudos da taxa de expansão do Universo, sabemos que há cerca de 13,8 bilhões de anos tudo que podemos observar veio de uma expansão a partir de um ponto menor que um átomo, o Big Bang.
O modelo do Big Bang é a melhor explicação que temos para a aparência do cosmos atual, mas ele tem suas limitações – como o fato de que não responde a algumas perguntas fundamentais, como “o que veio antes do Big Bang?” (se é que veio alguma coisa). Mas antes de tentar entender as possíveis respostas, é preciso primeiro entender a pergunta.

Inflação do big bang

O Universo pode ser definido como tudo o que existe em um sentido físico, mas nós podemos observar apenas uma parte dele. Olhando ao redor vemos galáxias por todos os lados, e elas todas se parecem umas com as outras, não há uma direção especial no espaço… Isso significa que o Universo não tem “bordas” (ou um centro).
Se fossemos movidos instantaneamente para uma galáxia distante, veríamos um cosmos semelhante ao que vemos da Terra, com um raio efetivo de 46 bilhões de anos-luz. Não podemos ver além desse raio, não importa onde estejamos posicionados.
Por vários motivos os cosmologista acreditam que o Universo sofreu um processo de inflação em seus primórdios – uma expansão rápida logo após o Big Bang. Com a expansão, veio o resfriamento, e, passados cerca de 380.000 anos do Big Bang, o Universo ficou transparente, e a luz daquela época pode ser percebida hoje como a radiação cósmica de fundo (CMB, na sigla em inglês de Cosmic Microwave Background).
Essa radiação foi examinada por meio de telescópios espaciais como o COBE, WMAP e, mais recentemente, o Planck, e cientistas perceberam que ela é bastante suave, mas não totalmente uniforme: contém irregularidades que eram minúsculas e ficaram imensas com a inflação, e se tornaram as sementes para os objetos em larga escala, como galáxias e grupos de galáxias vistos hoje.
Existem várias versões possíveis para a inflação, mas o ponto essencial é que as flutuações aleatórias de temperatura e densidade produzidas pelo Big Bang foram suavizadas pela expansão rápida, como um balão murcho e enrugado se torna um objeto liso quando inflado. Mas a inflação teria acontecido tão rápido que o Universo passou a ter regiões desconectadas – universos paralelos – que podem até mesmo ter leis físicas diferentes.
Universos de bolso

Entretanto, nada disso nos informa o que veio antes do Big Bang. Em muitos modelos inflacionários, bem como em teorias do Big Bang mais antigas, este é o único Universo que existe, ou, pelo menos, o único que podemos observar.
Uma exceção é o modelo conhecido como inflação eterna. Nele, o Universo Observável é parte de um “Universo de bolso”, uma bolha em uma enorme espuma de inflação. Na nossa bolha particular, a inflação começou e parou, mas em outros universos desconectados do nosso a inflação pode ter propriedades diferentes. A inflação eterna esvaziou as regiões fora das bolhas, eliminando toda a matéria ali – não há estrelas, galáxias ou qualquer coisa reconhecível.
Se a inflação eterna está correta, o Big Bang é a origem do nosso universo-bolha, mas não de todo o Universo, que pode ter uma origem muito anterior. Se algum dia tivermos evidências dos multiversos, elas serão indiretas, mesmo com a confirmação da inflação feita pelo telescópio Planck e outros. Em outras palavras, a inflação eterna pode responder sobre o que precedeu o Big Bang, mas ainda vai deixar a questão da origem última fora de alcance.
Ciclos de trilhões de anos

Muitos cosmologistas consideram o modelo inflacionário como o pior modelo que temos. As propriedades gerais da inflação são interessantes, graças à sua utilidade para resolver problemas difíceis em cosmologia, mas certos detalhes são complicados. O que causou a inflação? Como ela começou e quando terminou? Se a inflação eterna está correta, quantos universos-bolha podem existir com propriedades semelhantes às do nosso? Houve um “Big Bang Maior” que originou o multiverso? E, finalmente (o que diferencia a ciência da filosofia), podemos testar estas hipóteses?
Existe uma alternativa ao modelo inflacionário, que evita estas questões, e responde o que havia antes do Big Bang. Se o modelo de universo cíclico de Paul Steinhardt e Neil Turok estiver certo, o Universo reside dentro de um vazio em uma dimensão maior. Junto do nosso universo há um universo paralelo que não podemos observar diretamente, mas que está conectado com o nosso pela gravidade.
O Big Bang não seria o início, mas um momento em que duas “branas” (termo que deriva de “membranas”) colidiram. O Universo no modelo cíclico está entre períodos em que as branas estão se afastando, com expansão acelerada, e novos Big Bangs estariam em períodos em as branas colidem novamente. Como cada ciclo levaria trilhões de anos para se completar, o universo seria infinitamente velho, evitando os problemas filosóficos dos modelos inflacionários.
Se você acha que todas estas opções são espantosas, pode ter certeza de que os cientistas pensam o mesmo. Como o universo observável está em expansão acelerada, sem sinal de que vá entrar em colapso mesmo no futuro mais distante, por que haveria um cosmos com um início mas sem um fim semelhante? Se a inflação ou o Big Bang apaga as informações sobre o que veio antes (se é que algo veio), será que não estamos discutindo quantos anjos poderiam dançar Gangnam Style na cabeça de um alfinete? Mesmo se a inflação eterna ou o modelo cíclico forem corretos, eles colocam a questão da origem de tudo no campo do que não pode ser testado.
Em dez ou cem anos, as questões e métodos que usamos para responder estas questões provavelmente terão evoluído. Por enquanto, ainda não está claro como podemos saber o que precedeu o Big Bang. [BBC]

12.986 – Astrofísica – A Densidade da Estrela de Nêutrons


estrela_neutron2
Estrelas de nêutrons são, indiscutivelmente, um dos objetos mais exóticos do Universo. Como um daqueles amigos irritantes que aparentemente se superestima em cada aspecto da vida, estrelas de nêutrons excedem em quase todas as categorias: gravidade; força do campo magnético; densidade; e temperatura.
“Mas espere”, eu ouvi dizer, “buracos negros são muito mais densos!” Em certo sentido, isso é verdade, mas não podemos realmente determinar a estrutura interna de um buraco negro, uma vez que ela está para sempre oculta por trás do horizonte de eventos.
Estrelas de nêutrons, com uma crosta sólida (e com até mesmo oceanos e atmosfera!) são os objetos sólidos mais densos que podemos observar, chegando algumas vezes a densidade de um núcleo atômico em seu núcleo. Uma amostra de material de estrela de nêutrons do tamanho de um grão de areia pesaria aproximadamente o mesmo que o maior navio que já navegou pelos nossos mares – mais de 500.000 toneladas.
Estrelas de nêutrons também oferecem uma riqueza de comportamento extremo que as tornam um alvo atraente para os astrofísicos.

Origem de uma estrela de nêutrons
Acredita-se que estrelas de nêutrons são formadas a partir da explosão de uma supernova que acaba com a vida de uma estrela de tamanho médio, com cerca de 8 a 20 vezes a massa do nosso sol. Uma vez que seu combustível nuclear é consumido, a estrela explode, perdendo a maior parte de seu material para o espaço.
O restante colapsa em um pequeno objeto (pelos padrões astronômicos) com cerca de 22 km de diâmetro, o tamanho de uma cidade média, mas ainda assim com cerca de 1,5 vezes a massa do nosso sol.
Enquanto a crosta é composta principalmente de ferro cristalino, tais átomos não podem sobreviver profundamente na estrela, e o material transita através de uma estranha “pasta nuclear” (região A na imagem, abaixo) para o fluido de nêutrons do núcleo (regiões B e C).
As condições no núcleo não podem ser reproduzidas em experiências terrestres, e a incerteza sobre esta região – talvez compreendendo exóticos híperons ou até mesmo a “matéria estranha” – é o principal motivador para o estudo desses objetos.
Estrelas de nêutrons emitem pouca luz visível, o que as tornam praticamente impossíveis de detectar pelos modos tradicionais. A maioria dos poucos 1.000 exemplos conhecidos foram descobertos através das suas pulsações de rádio.
Como faróis cósmicos, os feixes de rádio emparelhados por esses pulsares varrem todo o universo. Se o feixe atravessa a Terra, ele pode ser detectado com radiotelescópios. O pulsar mais próximo, PSR J0437-4715, está a cerca de 500 anos-luz de distância.
Magnetares são pulsares com campos magnéticos incrivelmente fortes.
Microquasares são pulsares com jatos que atingem velocidades relativistas.

Rotação alucinante
Típicas estrelas de nêutrons pulsantes giram cerca de 1 vez por segundo, o que é extremamente rápido para um objeto denso e massivo. Mas se a estrela têm uma companheira binária normal, a estrela de nêutrons pode “girar” a mais de 10 vezes a velocidade de uma máquina de lavar roupa comum.
O processo pelo qual isso ocorre é chamado de acreção. Ao longo dos bilhões de anos de vida desses objetos, a estrela companheira evolui (e amplia) até as camadas externas sentirem a força gravitacional da estrela de nêutrons.
O gás da estrela companheira pode então fluir para a estrela de nêutrons, a fazendo girar mais.
Este processo tem alguns efeitos secundários notáveis. O gás caindo na estrela de nêutrons é aquecido a dezenas de milhões de graus, e a estrela de nêutrons vai começar a brilhar intensamente em raios-X, em vez de ondas de rádio. Essa radiação é bloqueada pela atmosfera da Terra, mas pode ser detectada por telescópios em satélites.

A fusão ocorre
O gás que se acumula na superfície da estrela de nêutron através do processo de acreção é semelhante à composição do nosso próprio sol – principalmente hidrogênio e hélio, com uma pequena porcentagem de outros elementos.
A enorme gravidade da estrela de nêutrons – algumas centenas de bilhões de vezes mais forte que a da Terra – irá comprimir e aquecer o gás, e depois de algumas horas ou dias a fusão nuclear pode ocorrer.
Mas essa queima não é tão bem comportada como em estrelas como o sol. Em vez disso, a queima é instável, e prossegue em apenas alguns segundos para envolver completamente a superfície da estrela de nêutrons, esgotando todo o combustível acumulado e dando origem a uma explosão de raios-X visível em toda a galáxia.
Estas explosões têm sido observados em cerca de 100 sistemas, desde os primeiras telescópios de raios-X serem lançados na década de 1960. Ocorrendo uma vez a cada poucas horas ou dias (dependendo da taxa de acreção), elas são de longe as mais frequentes explosões termonucleares no universo.
Claro que o fornecimento de gás a partir da companheira uma hora acaba. E quando isso ocorre, a estrela de nêutrons pode reprisar o seu papel como um pulsar de rádio, embora agora girando centenas de vezes a cada segundo. O recordista atual PSR J1748-2446AD gira 716 vezes por segundo! [IFLScience]

12.942 – Astrofísica – O mistério do objeto mais esférico já encontrado no Universo


esfera2

Folha Ciência para o ☻Mega

Os planetas e as estrelas não são. As forças centrífugas a que são submetidos fazem com que sejam “esmagados” nos pólos.
Mas, a 5.000 anos-luz da Terra, está Kepler 11.145.123 (ou KIC 11145123), cuja esfera parece desafiar as leis da física. Trata-se do objeto mais esférico encontrado no espaço até agora.
A sua esfera está tão perfeitamente intacta que pesquisadores do Instituto Max Planck para o Sistema Solar e da Universidade de Gottingen, na Alemanha, estão intrigados em descobrir o que leva o objeto a ser alheio às turbulências do espaço.
“Kepler 11145123 é o objeto natural mais esférico que já medimos, é muito mais redondo do que o Sol”, disse o astrônomo Laurent Gizon, chefe do estudo.
Para chegar a esta conclusão, os pesquisadores usaram uma técnica conhecida como sismologia, ou asterosismologia estelar, que estuda a estrutura interna das estrelas e determina a esfericidade do objeto.

PASSO DE TARTARUGA
Ao girar em seus eixos, as luas, planetas e estrelas são submetidos a forças centrífugas que achatam seus pólos.
O nosso Sol tem um ciclo de rotação de 27 dias e o raio da sua circunferência é 10 quilômetros maior na sua linha do equador do que nos pólos. No caso da Terra, essa diferença é de 21 quilômetros.
Já a KIC 11145123 apresenta uma diferença de apenas 3 quilômetros, incrivelmente pequena se considerarmos que esta estrela tem um raio de 1,5 milhões de quilômetros, duas vezes maior do que o Sol.
Embora os especialistas não tenham uma resposta conclusiva sobre a razão deste fenômeno, eles dão alguns palpites: “A rotação desta estrela é surpreendentemente mais lenta, três vezes mais devagar do que o Sol, e não sabemos exatamente o motivo”, disse Gizon à BBC.
“Mas, ao girar mais devagar, deforma menos”, acrescentou.
Além disso, seu centro gira mais lentamente do que suas camadas externas.

CAMPO MAGNÉTICO
O especialista afirma que a rotação não é, no entanto, o único fator que determina a forma de uma estrela.
Também existe o campo magnético.
“Nós percebemos que esta estrela parecia um pouco mais arredondada do que previa sua rotação”, diz o especialista.
“É por isso que também atribuímos sua forma à presença do campo magnético”.
“Nós sugerimos que seu fraco campo magnético (muito mais fraco do que o do Sol) seja uma possível explicação para a sua esfericidade”, relataram os autores do estudo, publicado na revista Science Advances.
Para os cientistas, a forma da estrela KIC 11145123 traz à tona dúvidas sobre a origem dos campos magnéticos.

12.807 – Astronomia: Na pista da misteriosa matéria escura


materia escura
É desconcertante: a imensa maioria da matéria do Universo é feita de algo que não sabemos o que é. Ela não forma átomos, nem interage com eles. Por falta de termo melhor, nós a chamamos de matéria escura.
O que assusta é a quantidade. Para cada quilo de matéria normal no Universo, há mais de cinco quilos de matéria escura. Na real, esse componente misterioso forjou os alicerces do cosmos, produzindo as concentrações que serviriam de sementes para as futuras galáxias.
Um estudo recém-realizado em Cambridge se concentrou numa faixa de estrelas na orla exterior da Via Láctea e encontrou falhas que podem ser explicadas pela passagem de uma nuvem de matéria escura, com massa total milhões de vezes maior que a do Sol. Se for isso mesmo, a descoberta sugere que as partículas que a compõem devem ser mais pesadas e lentas do que se imaginava.
Noutra frente de pesquisa, um detector instalado a bordo da Estação Espacial Internacional capta, desde 2011, traços que podem ser resultado da aniquilação de partículas de matéria escura — mais uma pista. E, claro, sempre há a esperança de que o maior acelerador de partículas do mundo, o LHC, possa detectar novas partículas hoje desconhecidas e coloque ponto final ao mistério.

15.616 – Viagens no Tempo


viagem-no-tempo
Se existem temas que definitivamente fascinam os produtores de entretenimento, a viagem no tempo é um dos principais, como fica claro em Alice Através do Espelho. No longa, que estreia esse mês nos cinemas, a jovem heroína embarca em um universo paralelo no qual presente e futuro se misturam.
Mas, antes de tentar entrar no espelho da sua casa, vamos investigar esse complexo assunto e descobrir o que é possível nesse roteiro e o que provavelmente nunca vai passar de ficção.
A pergunta que não quer calar: dá para viajar no tempo?
Quem responde é Rodrigo Nemmen, astrofísico, professor do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP e pesquisador de buracos negros. “Certamente é possível viajar no tempo, mas somente para o futuro”.
Até hoje, estudos, teorias e cálculos comprovam que isso é factível de duas maneiras: embarcando em uma viagem próxima à velocidade da luz ou sobrevoando uma região onde a força da gravidade seja extrema, como uma estrela de nêutrons ou um buraco negro.
Para entender como tudo acontece, precisamos encarar de frente duas das teorias mais inovadoras da física: a Teoria da Relatividade Especial ou Restrita e a Teoria da Relatividade Geral, ambas de Albert Einstein – e, sim, mesmo sendo centenárias, elas continuam a nortear toda e qualquer experiência sobre esse assunto.
Mas antes de alinharmos nosso pensamento às ideias de um dos principais físicos de todos os tempos, precisamos falar sobre o tempo!

Que tempo é esse?
Lição número 1: o tempo NÃO é absoluto. Ou seja, um segundo na Terra não é equivalente a um segundo em qualquer parte do Universo.
Como Einstein chegou a essa conclusão? Observando a velocidade da luz, que é uma constante. Ou seja, mesmo que a luz seja emitida por um objeto em movimento, sua velocidade é sempre a mesma: 299.792.458 m/s.
Relembrando, então, aquela famosa fórmula que aprendemos no Ensino Médio: a velocidade é igual a distância percorrida, dividida pelo tempo. No caso da velocidade da luz (que, como já foi explicado, é constante) a variante é o tempo!

Teoria da Relatividade Especial ou Restrita
Esqueça aquela história de uma supernave que vai viajar a uma velocidade absurda, até transpor um determinado portal e te levar para o futuro. De acordo com a física, o que acontece é que ao viajar próximo à velocidade da luz, o tempo passa mais devagar.
“Suponha que você é um astronauta e viaja no espaço, que é um ambiente sem gravidade, por um ano inteiro próximo à velocidade da luz. Para um observador que está na Terra, terão se passado 70 anos”, exemplifica Rodrigo Nemmen.

Teoria da Relatividade Geral
Nesse estudo, Einstein descobriu que quanto maior é o campo gravitacional de uma região, mais o tempo passa devagar nesse local quando comparado a um campo gravitacional mais fraco.
Isso acontece porque a matéria (energia) é capaz de “curvar” o espaço e o tempo à sua volta. No site do Instituto de Astronomia e Pesquisas Espaciais de Araçatuba (INAPE), há um ótimo exemplo que diz o seguinte: imagine o espaço-tempo como um colchão, basta colocar um objeto pesado sobre sua superfície para que ele se curve para baixo. Ou seja, quanto maior a densidade da matéria no tempo-espaço, maior será a curvatura causada e maior será a intensidade da força gravitacional.
“A gravidade em um buraco negro é extremamente forte. Se alguém conseguir orbitar próximo dessa região, sem ser ‘engolido’, o tempo para essa pessoa passará mais devagar do que em relação a uma pessoa que está longe desse ambiente”.
Então, se essas são as duas possibilidades já comprovadas de se viajar para o futuro, por que ninguém foi para lá até agora? Porque não é nada fácil acelerar um ser humano perto da velocidade da luz ou orbitar próximo a um buraco negro!
“Acelerar partículas subatômicas não é um problema para a tecnologia, mas fazer isso com um ser humano demanda uma quantidade colossal de energia que, provavelmente, explodiria o experimento. Isso porque, quanto mais próximo se chega da velocidade da luz, mais energia é necessária”, explica Rodrigo.
Quanto à segunda opção, precisaríamos criar um ambiente onde seja possível manipular a gravidade, outra coisa que não é nada fácil. Ou teríamos que ficar bem próximos a um astro denso. Detalhe: o buraco negro mais próximo da Terra encontra-se a meros mil anos-luz de distância.

Grandes – e velozes – passos para a humanidade
Mesmo sendo algo quase nulo do ponto de vista prático, os estudos e experimentos sobre viagem no tempo não devem parar nunca. “Na ciência, é importante que as pessoas pesquisem os mais diversos temas. Ao explorar os limites da física, como viajar no tempo, é normal esbarrar em becos sem saída. Grande descobertas científicas acontecem quando corajosos vão pelos caminhos menos explorados”, ressalta o professor.
Do ponto de vista científico e tecnológico, dois grandes avanços encheram a comunidade especializada de esperança. O primeiro deles é o Grande Colisor de Hadrons, que é o maior acelerador de partículas e o de maior energia existente no mundo. Trata-se, portanto, de uma espécie de “máquina do tempo” para as pequenas partículas que estão sendo aceleradas ali dentro, explorando a Teoria da Relatividade Restrita de Einstein.
Para dar uma ideia de sua grandiosidade, o colisor começou a ser construído em 1998 e demorou dez anos para ser concluído. O equipamento é enorme e ocupa um túnel de 27 km de circunferência, localizado na Suíça.
O segundo grande avanço aconteceu no início deste ano e refere-se a descoberta das ondas gravitacionais. “É a descoberta científica mais impactante da última década”, constata Rodrigo Nemmen. Ao observar a colisão de dois buracos negros, foi possível comprovar a criação de uma onda capaz de deformar o próprio tempo-espaço, como Albert Einstein previu na Teoria da Relatividade Geral. “Eventualmente, com esses conhecimentos, poderemos aprender uma maneira de deformar o tempo e viajar por ele”, esclarece o professor.

Sem olhar pra trás!
Não podemos dizer que é impossível viajar ao passado, mas nenhuma solução físico-teórica foi encontrada até o momento. Por isso, paradoxos temporais, buracos de minhoca e realidades paralelas são apenas especulações teóricas, sem qualquer tipo de comprovação.

buracosnegros

12.591 – Física – Ondas gravitacionais podem permitir viagem no tempo


ondas-gravitacionais
Viajar no tempo ou ir para outro planeta em questão de segundos. Essas ideias, que vêm dos filmes de ficção, podem estar mais próximas de virar realidade. Segundo um pesquisador do Instituto Nacional de Pesquisa Espacial (Inpe), que participou do estudo sobre as ondas gravitacionais, isso poderá acontecer daqui a 100 anos.
A primeira detecção de ondas gravitacionais, um fenômeno previsto pelo físico Albert Einstein na Teoria da Relatividade há cem anos, foi anunciada por um consórcio internacional de cientistas. Entre os pesquisadores, estão seis estudiosos do Inpe em São José dos Campos (SP).
Quando elaborou sua teoria da Relatividade Geral, Einstein afirmou que a gravidade é uma força de atração que age distorcendo o espaço e o tempo – espaço e tempo em sua concepção são uma coisa só. Quando há uma interação de objetos muito maciços, para os quais a força da gravidade é muito grande, eles produzem ondas que se propagam pelo espaço e tempo.
Ficção e realidade
Em 1985, ‘De volta para o Futuro’ se tornou um sucesso de bilheteria. O mundo se encantou com a história de um jovem e um professor que criaram uma máquina do tempo.
Segundo o Aguiar, fazer o mesmo que o personagem do jovem Marty Mcfly pode se tornar possível para as futuras gerações.
“Você não é destruído em nenhum momento, você viaja de um ponto para outro em um atalho em outra dimensão. Não consigo imaginar alguma coisa ainda neste século, mas de alguma forma vamos chegar lá”, defende o professor.
Som do universo
Entre os mais de mil cientistas que formam o grupo internacional que anunciou a descoberta das ondas sete são brasileiros, sendo seis do Inpe. O anúncio foi feito em Washington, nos Estados Unidos, acompanhado simultaneamente em 15 países colaboradores.
Experimento
O que os pesquisadores do projeto Ligo (Laser Interferometer Gravitational-Wave Observatory) encontraram em seus experimentos essencialmente foram “distorções no espaço e no tempo” causadas por um par de objetos com massas enormes interagindo entre si. Neste caso específico, os cientistas acreditam que o evento observado seja fruto da interação entre dois enormes buracos negros.
O Ligo consiste em dois enormes detectores de cerca de 4 km de extensão nos estados de Washington e Louisiana, nos EUA, operando conjuntamente.
O Ligo em si começou a funcionar em 2002, depois de outros experimentos iniciais, e sua sensibilidade vem sendo aprimorada desde então. Só com um aprimoramento maior realizado no ano passado, porém, foi possível detectar um primeiro evento. A colisão de buracos negros registrada pelo projeto foi detectada em 14 de setembro.
O custo do projeto Ligo foi estimado em US$ 620 milhões. O projeto foi uma iniciativa conjunta do Caltech (Instituto de Tecnologia da Califórnia) e do MIT (Instituto de Tecnologia de Massachusetts). Ao longo dos 40 anos que se passaram entre a construção do primeiro detector e a detecção das primeiras ondas gravitacionais, outros centros de pesquisa se juntaram à iniciativa, como o Inpe e o IFT-Unesp (Instituto de Física Teórica da Universidade Estadual Paulista).

12.574 – Encontrado planeta gigante que poderia abrigar vida


nasa-exoplaneta-star-wars
Uma equipe de astrônomos da NASA anunciou a descoberta do maior exoplaneta já encontrado, que gira em torno de dois sóis, localizado na zona habitável.
Achados desse tipo são apelidados de Tatooines por causa do planeta natal de Luke Skywalker, da saga Star Wars. A família do herói é nativa de um sistema solar duplo, ou seja, que é formado por duas estrelas – uma amarela e outra vermelha, de acordo com a ficção.
No caso da descoberta científica, esse “Tatooine” foi encontrado pelo telescópio Kepler, e sua descoberta foi divulgada na última segunda-feira. As conclusões foram apresentadas na conferência da Sociedade Astronômica Americana, em San Diego, nos EUA.
Batizado de Kepler-1647b, este planeta é um gigante gasoso que realiza a maior órbita para este tipo de planeta, orbitando as duas estrelas em 1.107 dias. As estrelas do seu sistema são parecidas com o nosso Sol; uma é pouco maior e a outra um pouco menor, informaram os astrônomos responsáveis pela descoberta que será publicada na revista Astrophysical Journal.

12.565 – Universo – Do que a matéria escura é feita?


galáxia ngc 2442
Galáxia NGC 2442

Mesmo tendo sido citada pela primeira vez por astrônomos há quase 100 anos, a matéria escura continua sendo um mistério.
Apesar de ela não ser observável, é possível calcular seus efeitos gravitacionais sobre os movimentos de galáxias e outros corpos celestes. Um dos grandes desafios dos pesquisadores é descobrir do que ela é constituída.
Essa matéria hipotética formaria aproximadamente 27% da massa e energia no universo observável. Atualmente os cientistas sabem mais a respeito do que a matéria escura não é do que sobre o que ela é de fato. Em primeiro lugar, como ela é escura, eles sabem que ela não consiste da mesma matéria de estrelas e planetas. Eles também sabem que ela não é feita de átomos chamados bárions, que compõem a matéria luminosa. Por último, eles têm certeza de que ela não se trata de antimatéria. Uma das principais teorias dos físicos para tentar explicar do que a substância é feita, diz respeito a partículas conhecidas como Weakly Interacting Massive Particles (Partículas Maciças de Interação Fraca, em tradução livre), as WIMPs. Elas teriam entre 1 e mil vezes a massa de um próton e fariam interações entre elas somente por meio da força fraca, que é responsável pelo decaimento radioativo.
O problema é que ainda há dúvidas a respeito da existência das WIMPs. Inúmeros experimentos estão sendo realizados para provar que ela existe estão sendo realizado ao redor do mundo, inclusive no LHC, o Grande Colisor de Hádrons. Caso não seja possível comprovar a existência das WIMPS, os cientistas terão que partir para uma nova hipótese para explicar do que a matéria escura é feita. O mistério não tem data para ser desvendado.

12.473 – Fragmentos do Cometa Halley poderão ser vistos no céu


Edmund_Halley
Halley emprestou seu nome ao mais famoso dos cometas

Esse fenômeno atinge seu auge entre os dias 5 e 7 de maio e será melhor visualizado do Hemisfério Sul. Embora o corpo celeste só se aproxime da Terra a cada 76 anos (a última vez foi em 1986), fragmentos de sua cauda são visíveis anualmente.
Você não vai precisar de telescópios ou equipamentos sofisticados para ver o fenômeno, apenas de seus olhos, um céu limpo e um pouco de paciência. O ideal é procurar um lugar mais rural, afastado das luzes da cidade. Como neste ano a chuva de meteoros ocorre em um período de lua nova, sua visibilidade deve ser maior. A atividade mais intensa está prevista para ocorrer na noite desta quinta-feira.
Essa chuva de meteoros associada ao Cometa Halley é chamada de Eta Aquáridas. Ela tem esse nome porque seu radiante fica próximo da estrela Eta Aquarii, uma das mais brilhantes da constelação de Aquário. Durante sua atividade, até 30 meteoros podem ser vistos por hora.
O Cometa Halley é uma bola de rocha e gelo que resultou da formação do nosso sistema solar. Quando esse corpo celeste passa perto do sol, o calor derrete sua superfície gelada, liberando partículas de gelo e poeira. Os destroços acompanham a trajetória do cometa, formando uma cauda que aponta para longe do sol. Quando a Terra cruza a órbita do cometa, nós passamos por essa cauda.
A gravidade do nosso planeta atrai o gelo e poeira que o Halley deixou para trás. Quando esses fragmentos atravessam nossa atmosfera, ele entra em atrito com as moléculas do ar. Com isso, os destroços queimam, deixando um rastro no céu, causando uma chuva de meteoros.

12.320 – Estudo com réplica do Sol jovem sugere que a vida na Terra esteve por um fio


sol jovem
Ao estudar uma estrela que é praticamente um réplica perfeita do Sol, só que bem mais jovem, um grupo de astrônomos com participação brasileira demonstrou que a existência da vida na Terra esteve por um fio. De acordo com eles, foi somente graças ao campo magnético do nosso planeta que a história teve final feliz.
O trabalho foi aceito para publicação no periódico “Astrophysical Journal Letters” e tem como primeiro autor José Dias do Nascimento, astrônomo da UFRN (Universidade Federal do Rio Grande do Norte) e pesquisador visitante do Centro Harvard-Smithsonian para Astrofísica, nos Estados Unidos. Do Brasil, também participa do estudo o astrônomo Gustavo Porto de Mello, do Observatório do Valongo da UFRJ (Universidade Federal do Rio de Janeiro).
O alvo dos pesquisadores foi a estrela Kappa¹ Ceti. Ela está localizada na constelação da Baleia, a uns 30 anos-luz de distância. E é igualzinha ao Sol, só que jovem. Enquanto a nossa estrela-mãe é uma senhora de meia-idade, com 4,6 bilhões de anos, os pesquisadores estimam que Kappa¹ Ceti seja uma adolescente, com entre 400 e 600 milhões de anos.
Não custa lembrar: as evidências mais antigas de vida na Terra remontam à época em que o Sol tinha essa idade aí.
Já se sabe que as estrelas, a exemplo dos seres humanos, são mais agitadas, instáveis e tempestuosas quando jovens. O passar dos anos vai tornando tanto umas como outros mais calmos, pacíficos e cordatos.
A questão é: quão mais raivoso era o Sol em sua juventude? Os pesquisadores puderam estudar isso usando a réplica Kappa¹ Ceti, medindo com precisão a magnetosfera da estrela. Dê uma olhada no naipe da modelagem das linhas de campo magnético.
Com esse campo magnético aí, Kappa¹ Ceti deve ser uma estrela cheia de manchas estelares gigantes, bem maiores que as do Sol de hoje, e capaz de supererupções, com energias milhões de vezes superiores às envolvidas naquelas ejeções de massa coronal da nossa estrela. O vento estelar dela, por sua vez, é cerca de 50 vezes maior que o solar atual. Isso é um caminhão de partículas altamente energéticas que a estrela está ejetando e soprando na direção dos planetas que por ventura estejam ao seu redor.
Decerto o Sol fez a mesmíssima coisa por aqui, 3,8 bilhões de anos atrás, banhando os planetas em altas doses de radiação. Hoje, em proporção bem menor, continua fazendo. Mas a Terra tem seu próprio campo magnético, que age efetivamente como um escudo.
O drama é que, naqueles tempos, a magnetosfera terrestre seria menor e mais fraca — talvez até mesmo metade do seu valor atual. “A Terra primitiva não tinha tanta proteção como tem agora, mas teve o suficiente”, diz Nascimento. “A sobrevivência da vida primitiva em nosso planeta esteve por um triz.”