14.140 – Como Funciona a Máquina à vapor


Os princípios básicos da máquina a vapor já haviam sido explorados pelo engenheiro e matemático greco-egípcio Hierão de Alexandria, que no século I a.C. estudava o vapor como força motriz, através de sua invenção, a eolípila.
Já no final do século XVII, Denis Papin e Thomas Savery desenvolveram os primeiros motores a vapor, porém, foi
somente em 1972, que Thomas Newcomen revolucionou a área. O chamado “motor de Newcomen”, a partir de então começou a ser amplamente usado.
Com o avanço, os motores a vapor começaram a movimentar as primeiras locomotivas, barcos, fábricas, bem como as minas de carvão. As primeiras máquinas a fazer uso da energia a vapor eram usadas para retirar água acumulada nas minas de ferro e carvão e ainda eram utilizadas na fabricação de tecido.

Naquela época estava ocorrendo a chamada Revolução Industrial, em que o número de indústrias teve um crescimento vertiginoso, e com isso, a necessidade de usar cada vez mais máquinas para suprir o trabalho humano.

A primeira máquina a vapor foi utilizada por Thomas Savery, na retirada de água de poços de minas. A máquina transformava a energia armazenada no vapor quente em energia utilizável.
Na máquina de Savary, o vapor, que é proveniente da água aquecida até a ebulição em uma caldeira, entrava em uma câmara. Tal câmara, após ser fechada, era arrefecida por aspersão da água fria, e assim acontecia a condensação do vapor no seu interior.
Uma máquina a vapor não cria energia, mas sim usa o vapor para transformar a energia quente que é liberada pela queima de combustível. Toda máquina a vapor possui uma fornalha para que seja realizada a queima de carvão, óleo, madeira ou mesmo outro combustível para produzir energia calorífica.
Além disso, a máquina a vapor dispõe de uma caldeira. Assim, o calor proveniente da queima de combustível leva a água a transformar-se em vapor no interior dessa caldeira. Com o processo, o vapor expande-se, e ocupa um espaço muitas vezes maior que o ocupado pela água. A energia da expansão produzida pode ser aproveitada de duas formas: A primeira, deslocando um êmbolo num movimento de vaivém ou, acionando uma turbina.

Conheça o funcionamento de uma máquina a vapor

maquina_vapor

Assim sendo, na caldeira, o calor faz com que a água entre em ebulição. Assim, quando a válvula A está aberta e a válvula B permanece fechada, o vapor acaba entrando sob pressão e empurrando o êmbolo para cima. Deste modo, a roda R e a biela B acabam sendo deslocadas. O êmbolo, ao atingir o topo do cilindro, a válvula A acaba fechando para cortar o fornecimento de vapor, e a válvula B abre-se, fazendo com que o vapor saia do cilindro e entre no condensador.
Através da água corrente o condensador é mantido arrefecido. Assim que o vapor deixa o cilindro a pressão diminuiu no seu interior e a pressão atmosférica empurra o êmbolo para baixo. O êmbolo, ao atingir o fundo do cilindro, a válvula B se fecha a válvula A abre. A partir de então, o vapor entra no cilindro e o processo começa novamente.
Locomotivas a vapor
No século 19 surgiram as primeiras locomotivas movidas a vapor, sendo que geralmente tinha sua energia gerada pela queima de carvão nas fornalhas. Esse modelo de locomotiva foi usado até o final da Segunda Guerra Mundial.

A primeira locomotiva a vapor foi construída por Richard Thevithick, sendo que o primeiro teste foi feito em 21 de fevereiro de 1904, porém, somente após alguns anos o projeto acabou sendo usado. A tecnologia, no decorrer dos seus 150 anos de uso da energia a vapor foi sendo aprimorado.
As LOCOMOTIVAS A VAPOR são constituídas basicamente de:

1) CALDEIRA : local onde é produzido o vapor de água;

2) MECANISMO: Conjunto de elementos mecânicos que tem pôr objetivo de transformar a energia calorífica dos combustíveis em energias mecânica para assim transmitir o movimento resultante dos êmbolos aos eixos motrizes e finalmente, transformar esse movimento retilíneo alternado em circular contínuo para as rodas;
3) VEÍCULO: constituído pela carroceria, rodas, eixos, caixas de graxa e molas.

14.139 – O que é a Teoria Quântica?


teoria-quantica
As verdadeiras revoluções científicas são aquelas que além de ampliar os conhecimentos existentes, se fazem também acompanhar de uma mudança nas idéias básicas sobre a realidade. Um exemplo célebre foi a revolução do polonês Nicolau Copérnico, no século XVI, que derrubou o conceito segundo o qual a Terra estava imóvel no centro do Universo, afirmando em vez disso que nosso planeta gira em torno do Sol. Depois, o inglês Isaac Newton suplantou o conceito de espaço absoluto e dois séculos mais tarde o alemão Albert Einstein aposentou também a ideia do tempo absoluto. Embora importantes, nenhuma dessas grandes revoluções na ciência pode rivalizar com o impacto da revolução quântica. A partir dela, os físicos foram forçados a abandonar não apenas os conceitos do homem sobre a realidade – mas a própria realidade. Não admira que a Física Quântica tenha adquirido a reputação de algo bizarro ou místico. Tanto que o dinamarquês Niels Bohr, um dos criadores da nova ciência, chegou a afirmar certa vez que só não se escandalizou com a Física Quântica quem não a entendeu.
O ponto de partida para chegar às idéias quânticas é o átomo, já conhecido dos filósofos gregos, na Antigüidade. Eles acreditavam que toda matéria era constituída por minúsculos fragmentos indestrutíveis. Ora, o domínio da Física Quântica é formado justamente pelos fragmentos desses fragmentos. Desde 1909, de fato, o inglês Ernest Rutherford estabeleceu que os átomos, aparentemente indivisíveis, são compostos por um núcleo ao redor do qual giram outras partículas, os elétrons. Segundo esse modelo, o núcleo podia ser comparado ao Sol, enquanto os elétrons seriam os planetas orbitando a sua volta. E importante salientar a ideia de que os elétrons seguiam trajetórias bem definidas, de tal modo que a qualquer momento seria possível determinar a sua posição e a sua velocidade.
O problema é que, ao contrário dos planetas, os elétrons não seguem um trajeto claro e inequívoco quando se movem. Seus caminhos caprichosos só seriam revelados anos depois do modelo atômico proposto por Rutherford. O primeiro sinal de que a visão “planetária”não funcionava surgiu em 1911, quando Bohr escreveu uma nova fórmula sobre a emissão de energia pelos átomos. Para surpresa geral, a fórmula mostrava que havia lugares proibidos para o átomo – regiões inteiras, em torno do núcleo atômico, onde os elétrons não podiam girar. Podiam saltar de uma órbita mais distante a outra mais próxima, mas não podiam ocupar diversas órbitas intermediárias. E, nesse caso, emitiam um pacote inteiro de energia – nunca menos de certa quantidade bem definida, desde então chamada quantum de energia.
Era estranho, já que os planetas podiam girar a qualquer distância do Sol e mudar de órbita alterando o seu nível energético em qualquer quantidade, sem limite. Apesar disso, a fórmula de Bohr explicava com precisão os fatos conhecidos sobre a emissão de luz pelos átomos, de modo que a nova Física do quantum acabou se impondo com firmeza. Dez anos mais tarde, o enigma das órbitas proibidas foi resolvido de uma maneira que afastou ainda mais do átomo a ideia de um sistema solar em miniatura. Desde a década de 20, com efeito, as órbitas dos elétrons passaram a ser vistas como algo semelhante às ondas sonoras que compõem as notas de um instrumento musical: portanto. uma imagem muito distante dos corpos sólidos girando em torno do Sol.
O primeiro passo na direção das ondas eletrônicas surgiu em experiências nas quais um feixe de elétrons atravessava um cristal e se espalhava mais ou menos como a luz ao formar um arco-íris. O físico francês Louis de Broglie mostrou que o comprimento dessas inesperadas ondas podia ser relacionado com a velocidade dos elétrons. Segundo De Broglie, elétrons em alta velocidade se comportam como ondas curtas e elétrons em baixa velocidade, como ondas longas. Assim, tornou-se possível transformar uma característica dos movimentos mecânicos – a velocidade – em um traço típico dos fenômenos ondulatórios, o comprimento de onda.
Essa foi a deixa que o alemão Erwin Schrodinger aproveitou para criar a imagem musical do átomo mostrando que ela desvelava o enigma das órbitas proibidas. Basta ver que, ao vibrar, uma corda de violão produz uma nota fundamental, como o mi por exemplo, e diversas outras notas geralmente inaudíveis, que enriquecem o som mais forte.
São os chamados harmônicos, cujas vibrações são sempre múltiplos inteiros da vibração principal: pelo menos duas vezes mais rápidas do que esta, mas nunca 2,5 vezes, ou 3.5 vezes. O mesmo ocorre no átomo, imaginou Schrodinger: nesse caso, o elétron só gira onde o tamanho da órbita lhe permite formar ondas inteiras, excluindo as órbitas que, para serem completadas, exigiriam uma fração de onda.
O resultado confirmava a fórmula intuitiva de Bohr. dando início a uma nova teoria física, daí para a frente chamada Mecânica Quântica. Sua grande marca foi a introdução do conceito de onda de maneira tão fundamental quanto a noção de partícula. Coube ao alemão Max Born, outro dos grandes pioneiros do século, explicar como um elétron podia ser ao mesmo tempo onda e partícula. Para ele, a onda não era nenhum tipo de substância material, mas um meio de avaliar certas medidas, como a velocidade ou a posição de uma partícula, “Onda eletrônica”, na verdade, seria uma expressão com o mesmo sentido que se atribui à expressão “onda de criminalidade”. Assim, quando há uma onda de crimes numa cidade, há grande probabilidade de um crime ocorrer nessa cidade, a qualquer momento.
A onda descreve um padrão estatístico, dizendo em que período de tempo, ou em que locais, os crimes são mais prováveis. Da mesma maneira, a onda associada a um elétron descreve a distribuição estatística dessa partícula, determinando onde é mais provável que ela esteja. A ondulação nada tem a ver com a substância do elétron, mas em cada ponto do espaço diz qual a probabilidade de que ele se encontre ali. Essa interpretação de Max Born poderia parecer frustrante para quem esperasse ver as ondas ligadas a algum segredo sobre a natureza da matéria, mas é uma dramática mudança na própria ciência. Até então, havia grande convicção de que o Universo fosse estritamente determinístico e de que, portanto, sempre se poderia conhecer com precisão a posição de um corpo. Para a Mecânica Quântica, porém, o Universo é inerentemente não-determinístico, uma idéia que Albert Einstein nunca aceitou. “Deus não joga dados com o Universo”, respondia ele aos que argumentavam em favor da probabilidade quântica. Mas existe um método poderoso para tentar adivinhar os lances dos dados divinos: trata-se do célebre Princípio da Incerteza, enunciado pelo físico Wemer Heisenberg, em 1927.
Sua base é uma fórmula para medir pares de valores, como por exemplo velocidade e posição. O princípio diz que, se a posição for medida com grande precisão, é possível ter uma certa ideia do valor da velocidade. Se, em vez disso, se medir a velocidade com precisão, a posição pode ser avaliada dentro de certos limites. A regra vale para outros pares de valores, como tempo e energia. Muitas vezes, o princípio tem sido explicado como uma interferência do medidor sobre o objeto medido: para saber a posição de um elétron é preciso agir sobre ele, por meio de um raio de luz, por exemplo. O raio incide sobre o alvo e, dependendo do desvio que sofra permite avaliar a posição do alvo.
É o mesmo procedimento que se usa para ver um objeto grande, como um carro, e determinar onde está. É claro que o levíssimo impacto de um ponto de luz não tem nenhum efeito mensurável sobre o movimento do carro, enquanto no caso do elétron o choque é devastador, perturbando a medição. Em conseqüência, haveria uma incerteza inerente a toda medição em escala microscópica. Na realidade, segundo a concepção moderna, não há sentido dizer que um elétron tem ao mesmo tempo posição e velocidade bem definidas. A incerteza seria inseparável da própria natureza dos corpos quânticos.
É mais fácil imaginar que um elétron tem duas caras – como um ator desempenhando dois papéis em um filme. Ao medir sua posição, se estará observando O “elétron-em-posição”, um dos papéis do ator. O “elétron-em-velocidade ” entra em cena quando se faz uma medida de velocidade. No primeiro caso, o elétron se assemelha mais a uma partícula, já que a imagem que temos é a de um corpo bem localizado no espaço. Quando a medida mais precisa é a da velocidade e o corpo não tem uma posição definida – há diversos lugares com igual probabilidade -, então surge com mais força a sua característica de onda.
A experiência que melhor ressalta a dupla face dos elétrons é a das fendas de interferência, inicialmente realizada com luz pelo inglês Thomas Young, no início do século XIX. A comparação com a luz é importante. Um raio luminoso é dirigido para uma tela com uma estreita fenda de modo a projetar uma imagem difusa em uma segunda tela colocada atrás da primeira. Se a primeira tela tiver duas fendas em vez de uma, surgirão duas imagens difusas, mais ou menos circulares, que se sobreporão parcialmente. Mas as imagens sobrepostas não se tornam uma simples soma de luzes: em vez disso, aparecem diversas faixas intercaladas de luz e sombra. São as chamadas franjas de interferência.
O mesmo efeito é obtido se, em lugar de luz, se usar um feixe de elétrons. A franja eletrônica, desenhada em uma tela de TV, é uma demonstração da natureza ondulatória do elétron. As faixas “claras”, nesse caso, representam as posições onde é mais provável encontrar os elétrons. É impossível explicar a interferência de elétrons por meio da noção tradicional de partícula mecânica. E claro que um elétron não pode passar pelas duas fendas ao mesmo tempo, pelo menos enquanto se mantiver apenas como uma partícula, à maneira antiga. Mas a interferência é uma combinação daquilo que acontece nas duas fendas ao mesmo tempo. Então, se o elétron passa por uma única fenda, como será que a existência da outra fenda, por si só, pode criar as franjas claras e escuras?
A resposta é que a partícula está se comportando como uma onda. Mesmo quando só um elétron é atirado contra as fendas, o padrão de interferência surge na tela, interferindo, por assim dizer, consigo mesmo. Segundo o princípio da incerteza é possível fazer uma medida precisa da posição do elétron e decidir em qual das duas fendas ele está, mas o preço a pagar é uma perda de precisão sobre o rumo que ele tomará em seguida. De modo que se terá apenas uma vaga idéia de seu movimento entre uma placa e outra: a maior probabilidade é de que na segunda placa se formará uma imagem difusa e aproximadamente circular.
Não é possível avaliar a precisa distribuição de claros e escuros das franjas de interferência. Caso se queira medir diretamente esse padrão, será preciso abandonar qualquer pretensão de saber por qual fenda o elétron passou: é igualmente provável que tenha passado por qualquer uma delas, o que significa uma incerteza sobre sua posição. Um meio de entender tudo isso é imaginar que existam dois mundos, de tal forma que em um deles o elétron passe pela primeira fenda e no outro, pela segunda. Os dois mundos coexistem, misturando suas realidades, até o momento em que se faça uma medida direta da posição do elétron. Nesse caso, as franjas de interferência – formarão uma realidade bem definida apenas enquanto não se medir a posição do elétron em uma ou outra fenda.
O fato é que os pesquisadores podem escolher o que querem ver – uma outra face do elétron – e por isso se costuma dizer que a natureza do elétron depende do homem. Nem todos os físicos levam a sério a ideia de duas realidades existindo uma ao lado da outra, mas é possível puxar pela imaginação e penetrar ainda mais profundamente nos seus paradoxos. No caso do experimento com as franjas de interferência, o que aconteceria se o feixe de elétrons dirigido para as fendas alcançasse a segunda tela, sem que ninguém observasse o resultado? A tela poderia ser fotografada e a foto, arquivada, para que não fosse vista. Assim, algo teria acontecido, mas, como não foi observado, não poderia existir como realidade concreta – até que alguém finalmente se decidisse a lançar um olhar criador para o fantasma perpetuado no filme.
Trata-se de um célebre quebra-cabeça criado por Erwin Schrodinger e desde então apelidado “paradoxo do gato”.
Esse experimento mental, como dizia o físico, funciona da seguinte forma: um gato é aprisionado numa caixa junto com uma garrafa selada contendo gás venenoso. Sobre a garrafa pende um martelo pronto para quebrá-la. O gatilho dessa armadilha é uma substância radioativa que emite partículas a alta velocidade. Em 1 minuto, há uma chance de 50% de que a substância emita radiação e solte o martelo. fazendo quebrar a garrafa e liberar o gás venenoso. Assim, ao cabo de 1 minuto, coexistem dois mundos possíveis. Num deles, o gatilho foi acionado e o gato está morto; no outro, não houve emissão de radiação e o gato está vivo. Enquanto não se abrir a caixa, nenhuma das duas possibilidades poderá ser considerada real e o gato não será muito diferente dos mortos-vivos das histórias de terror. Ele permanece numa fantasmagórica superposição de realidades, entre a vida e a morte.
O físico inglês Anthony Leggett imagina que os enigmas quânticos não valem para os gatos – eles são complexos demais, do ponto de vista físico, para ficarem suspensos entre dois mundos-fantasmas. A mecânica probabilística está definitivamente confinada ao universo das partículas fundamentais, as formas mais simples da matéria. Leggett. dessa maneira, propõe que existem duas Físicas diferentes regendo o mundo, uma delas com leis para as partículas, individualmente, outra com leis para os vastos conjuntos de átomos que compõem os seres vivos e os objetos macroscópicos.
O físico americano Eugene Wigner, por sua vez, criou uma especulação radical segundo a qual é a mente do físico que cria toda a realidade. Seria a consciência do homem que filtra a confusão quântica do Universo e gera uma realidade bem definida. Roger Penrose é outro cientista a imaginar um entrelaçamento entre a mente e a realidade. Ele pensa que os mecanismos mentais do raciocínio estão submetidos às flutuações quânticas, dando origem, por exemplo, às inexplicáveis explosões criativas dos músicos ou dos matemáticos. Muitos pensadores, como Fritjof Capra, supõem além disso um paralelo entre a realidade quântica e as concepções místicas das religiões orientais.
Todas essas especulações indicam como são profundos os paradoxos que, há quase 1 século, entraram para os livros de Física por meio da Mecânica Quântica. O fato de continuarem sendo debatidos por tanto tempo pode não impressionar aqueles cientistas para os quais as teorias servem apenas como instrumento de trabalho. Mas poucos adotariam a opinião radicalmente cética de Einstein que, nas suas próprias palavras, enterrou a cabeça na areia “de medo do temível quantum”.
O sim, o não e o talvez

O uso da probabilidade nos cálculo da Física deu excelente resultado, levando a uma formidável ampliação dos horizontes do conhecimento e a inventos como a TV e o raio laser. Mas a probabilidade também tem as suas limitações e, quando aplicada a uma teoria fundamental, como é o caso da Mecânica Quântica, provoca certa inquietação. Uma coisa, por exemplo, é alguém olhar um carro e dizer: “A velocidade daquele carro é de 100 quilômetros por hora”. Outra, bem diferente, é dizer: “Aquele carro não tem velocidade definida; é provável que seja 100 quilômetros por hora, mas também pode ser 80 ou 120”.

Nas duas situações, existem informações básicas sobre o carro – calcular a velocidade é um dado absolutamente fundamental para qualquer teoria física. Mas, na primeira, a informação é inequívoca: um único número. Em lugar disso, a resposta probabilística fornece um conjunto de números, como se o carro pudesse desenvolver diversas velocidades ao mesmo tempo. Do ponto de vista científico, as respostas múltiplas da Mecânica Quântica significam apenas isso: a teoria, em certos casos, oferece um conjunto de resultados mais ou menos prováveis para determinado cálculo. Qualquer interpretação além disso é simples exercício de imaginação. Um problema é que, no caso de um corpo como o carro, a Física sempre dá uma resposta única e taxativa – a probabilidade só afeta os corpos microscópicos.

Esse fato força uma divisão do mundo físico em duas partes, numa das quais valem leis probabilísticas e deterministas, e no outro, apenas leis probabilísticas. Atualmente, a grande maioria dos cientistas aceita, sem preconceito e sem versões mirabolantes, as equações probabilísticas. O que nem todos aceitam é o casamento da nova Física com a religião. “Na minha opinião, não tem cabimento associar o misticismo à Mecânica Quântica”, pondera o professor Henrique Fleming, físico teórico da Universidade de São Paulo. Isso causa uma certa confusão entre o que é ciência e o que está mais próximo da religião ou da Filosofia, acabando por não esclarecer nem uma coisa nem outra.

14.138 -Mega Cientistas – Max Planck


max-planck
Max Karl Ernst Ludwig Planck, cientista alemão nascido em Kiel no dia 23 de abril de 1858, abriu caminho para o que hoje conhecemos como teoria quântica.
Pertencendo a uma família de grande tradição acadêmica, Planck estudou nas Universidades de Munique e Berlim, onde teve aulas com Helmholtz e Kirchhoff, e recebeu seu doutorado, em 1879. Até o contato com esses dois grandes cientistas, ainda tinha dúvidas entre seguir a carreira musical ou a científica.
Ele foi Professor em Munique de 1880 a 1885, em seguida, Professor Associado de Física Teórica, em Kiel, até 1889. Com a morte de Kirchkoff, assumiu a Cátedra de Física Teórica da Universidade de Berlim (1887), onde foi posteriormente reitor. Permaneceu trabalhando nesta Universidade até sua aposentadoria em 1926. Mais tarde ele se tornou presidente da Sociedade para a Promoção da Ciência Kaiser Wilhelm (hoje Sociedade Max Planck), um posto que ocupou até 1937. A Academia Prussiana de Ciências o nomeou membro em 1894 e Secretário Permanente, em 1912.
Os primeiros trabalhos de Planck foram sobre termodinâmica. Também publicou trabalhos sobre a entropia, termoeletricidade e na teoria das soluções diluídas.
Ao mesmo tempo, também os problemas da radiação envolveram sua atenção. A partir desses estudos, foi levado para o problema da distribuição de energia no espectro de radiação total. Levando em conta as teorias clássicas, a Energia emitida por um corpo que não reflete luz (objeto teórico conhecido como Corpo Negro) deveria variar na mesma proporção da temperatura. Na prática, não era isso que acontecia. Planck foi capaz de deduzir a relação entre a energia e a frequência da radiação. Em um artigo publicado em 1900, ele anunciou essa relação:
E=h.f
Onde E é energia, f é frequência e h é uma constante universal, hoje conhecida como Constante de Planck. Esta constante foi baseada na ideia revolucionária de que a energia emitida por um corpo negro só poderia assumir valores discretos conhecidos como quanta (palavra vinda do latim). Um quantum seria um pacote de energia emitido e quanta é plural de quantum.
Essa descoberta foi determinante para a física atômica, pois fundamentou o modelo atômico de Niels Bohr (1913) e abriu caminho para a teoria de Einstein que explica o efeito fotoelétrico. A introdução do conceito de descontinuidade contrariou o princípio do filósofo alemão Wilhelm Leibniz, “Natura non facit saltus” (a natureza não dá saltos), que dominava todos os ramos da ciência na época, tornando-se a teoria quântica, na grande revolução que levou à Física Moderna do século XX. Foi o ponto de partida de uma nova lógica nas várias pesquisas sobre a estrutura do átomo, radiatividade e ondulatória e rendeu a Max Planck o Prêmio Nobel de Física de 1918.
Planck enfrentou um período conturbado e trágico de sua vida durante o governo nazista na Alemanha, quando sentiu que era seu dever permanecer em seu país, mas era abertamente contrário a algumas das políticas do Governo, principalmente quanto à perseguição dos judeus. Nas últimas semanas da guerra sofreu grandes dificuldades após a sua casa ter sido destruída por um bombardeio.
Era venerado pelos seus colegas, não só pela importância de suas descobertas, mas também por suas qualidades pessoais. Foi um pianista talentoso, daí ter cogitado seguir carreira como músico durante a juventude.
Planck foi casado duas vezes. Após a sua nomeação, em 1885, para Professor Associado em sua cidade natal Kiel casou-se com uma amiga de infância, Marie Merck.

14.137 – IA – Algoritmos Controlam Tudo


algoritmo
Quando você procura por um novo par de sapatos online, escolhe um filme na Netflix ou solicita um aluguel de carro, provavelmente um algoritmo tem sua palavra para dizer no resultado.
Algoritmos estão sendo experimentalmente usados para escrever novos artigos de dados brutos, enquanto a campanha presidencial de Donald Trump foi feita por profissionais de marketing comportamental que usaram um algoritmo para localizar as maiores concentrações de “eleitores persuasíveis”.
Mas, embora tais ferramentas automatizadas possam introduzir uma certa dose de objetividade em decisões antes subjetivas, os temores estão aumentando em relação à falta transparência que algoritmos podem acarretar, com pressão crescente para aplicar padrões de ética ou “responsabilização”.
A cientista de dados Cathy O’Neil adverte para não “confiar cegamente” em fórmulas para determinar um resultado justo.

“Algoritmos não são inerentemente justos, porque a pessoa que desenvolve um modelo define êxito em alcançar o resultado desejado”, disse ela.

Aumentando as desvantagens
O’Neil argumenta que, embora alguns algoritmos possam ser úteis, outros podem ser nefastos. Em seu livro de 2016, “Weapons of Math Destruction”, ela cita alguns exemplos preocupantes nos Estados Unidos:
– Em 2010 , as escolas públicas em Washington DC despediram mais de 200 professores – incluindo vários professores respeitados – com base nas pontuações de um algoritmo com uma fórmula que avaliava seus desempenhos.

– Um homem diagnosticado com transtorno bipolar foi rejeitado para um emprego em sete grandes varejistas após um teste de “personalidade” de terceiros o considerar um grande risco baseado em sua classificação algorítmica.

– Muitas jurisdições estão usando “policiamento preditivo” para transferir recursos para prováveis “áreas perigosas”. O’Neil diz que dependendo em como os dados são alimentados no sistema, isso poderia levar a revelar mais crimes menores e gerar um “ciclo contínuo” que estigmatiza comunidades pobres.

– Alguns tribunais contam com fórmulas classificadas por computadores para determinar sentenças de prisão e liberdade condicional, o que pode discriminar minorias ao levar em conta fatores de “risco”, como seus bairros, amigos ou familiares ligados ao crime.

– No mundo das finanças, os corretores coletam dados de fontes online e outras fontes como novas formas de tomar decisões sobre crédito ou seguro. Isso muitas vezes amplifica o preconceito contra os menos favorecidos, argumenta O’Neil.
Suas descobertas foram repercutidas em um relatório na Casa Branca ano passado alertando que sistemas algorítmicos “não são infalíveis – eles contam com entradas imperfeitas, lógica, probabilidade e pessoas que os planejam”.
O relatório observou que sistemas de dados podem, de forma ideal, ajudar a eliminar o viés humano, mas alerta contra algoritmos que “desfavorece sistematicamente certos grupos”.

Rastros digitais
Zeynep Tufekci, um professor da Universidade da Carolina do Norte que estuda tecnologia e sociedade, disse que decisões automatizadas são frequentemente baseadas em dados coletados sobre pessoas, algumas vezes sem o conhecimento delas.
“Estes sistemas computacionais podem deduzir todo tipo de coisa sobre você a partir de seus rastros digitais”, Tufekci disse em uma palestra no TED recentemente.
“Eles podem concluir sua orientação sexual, seus traços de personalidade, suas tendências políticas. Eles têm um poder preditivo com altos níveis de precisão”.
Estas percepções podem ser úteis em certos contextos, como ajudando médicos profissionais a diagnosticar depressão pós-parto, mas injustas em outros, ele disse.
Parte do problema, ele disse, vem do fato de pedir para computadores responder questões que não tem uma única resposta certa.
“São questões subjetivas, abertas e carregadas de valores pessoais, perguntando quem a empresa deve contratar, qual atualização de qual amigo deve ser mostrada, qual condenado é mais provável de reincidir”.

14.136 – IA Na Medicina


AI na Medicina
Inteligência Artificial na medicina diagnóstica

A Portal Telemedicina criou, com o software TensorFlow, do Google, uma solução inovadora para a emissão de laudos à distância. Seu sistema ajuda médicos em todo o Brasil a obter diagnósticos mais assertivos, pois compara analiticamente exames presenciais a casos similares de uma base de dados com 30 milhões de imagens e exames. A plataforma elabora recomendações médicas com critérios confiáveis e precisos graças ao uso da Deep Learning, um método em que algoritmos complexos imitam a rede neural do nosso cérebro, conferindo ao sistema uma capacidade de detectar achados médicos em nível sobre-humano.
Se o exame médico e a recomendação do algoritmo não baterem, o exame é encaminhado a outros três doutores para uma avaliação mais detalhada. O programa incorpora aprendizados a cada laudo emitido, acumulando repertório clínico à sua base de dados. Outro aspecto inovador do sistema é sua capacidade de fazer uma triagem automática dos exames, permitindo que os casos emergenciais tenham prioridade na fila do médico.

Em cirurgias
Robôs estão presentes em salas de cirurgia há décadas e já se mostraram eficazes na tarefa de tornar procedimentos menos invasivos. Mas, no que depender dos avanços da Inteligência Artificial, o papel das máquinas deve ficar ainda mais complexo. Já há, por exemplo, robôs inteligentes capazes de analisar avaliações pré-operatórias para orientar os movimentos do médico durante a cirurgia – o que pode diminuir em até 20% no tempo de internação de um paciente.
Uma das maiores ambições deste setor, porém, é criar robôs autônomos, aptos a conduzir cirurgias sem a necessidade de comandos pré-definidos e com a capacidade de usar dados de operações passadas para aprimorar suas técnicas. Nessa corrida tecnológica, o Google e a Johnson & Johnson largaram na frente com a co-fundação da start-up Verb Surgical, um projeto que desenvolve ferramentas de machine learning para democratizar o acesso às cirurgias. O super robô cirurgião ainda é um protótipo, mas a Verb estima que ele deve chegar ao mercado já em 2020.

No tratamento intensivo
A empresa israelense de análises clínicas Clew inventou uma plataforma baseada em IA para prever, em estágio inicial, potenciais complicações fatais na UTI. Pensada para auxiliar decisões médicas no mais delicado dos estágios de tratamento, a solução promete identificar o colapso de sistemas vitais com duas ou três horas de antecedência.
A ferramenta de análises colhe informações como pressão arterial, oxigênio, níveis de sangue e capacidade cardíaca de pacientes em tratamento intensivo e as compara com uma base de dados para identificar padrões antes que eles culminem na interrupção das funções cerebrais ou cardíacas. Ela já foi usada em testes em hospitais de Israel e dos EUA e deve estar disponível comercialmente a partir de 2019.

Em exames
Criado pela empresa Healthy.io em parceria com a Siemens Healthineers, o Dio.io permite que pacientes possam fazer seu exame de urina no conforto de suas casas. Aprovado recentemente pela agência norte-americana de fármacos FDA, o produto é um é um kit que coleta e analisa amostras com ajuda de machine learning e visão computacional.
O paciente abre o app do Dio.io e, com a ajuda de um assistente virtual (chatbot), segue o passo a passo: primeiro, encher um recipiente com a urina; em seguida, imergir uma tira que, em contato com o material, pode adquirir várias colorações. Com ajuda da câmera do celular, em instantes o app processa as informações visuais contidas na tira, entrega os resultados mais prováveis e dá conselhos, incluindo a recomendação de uma consulta médica se for o caso.
Na prevenção
Lançado em 2018 pela Nautilus, a plataforma Max Intelligence é um sistema de treinamento físico baseado em inteligência artificial que vem embutida em alguns de seus equipamentos cardiovasculares. Trata-se de um personal-trainer virtual capaz de desenvolver e orientar treinamentos aeróbicos totalmente personalizados, utilizando vídeos criados por instrutores e ferramentas motivacionais para criar uma rotina de treinos eficiente e estimulante.
Com base na capacidade física e nos objetivos de cada pessoa, a máquina vai aprendendo e aperfeiçoando suas orientações à medida da evolução de cada um. A interface para gerenciar os treinamentos é fácil de usar e roda em um tablet desenvolvido em parceria com a Samsung, que foi criado exclusivamente para as máquinas Bowflex Max Trainer vendidas pela empresa norte-americana.

14.135 – A Biônica é Uma Realidade?


mao biônica
Em filmes e outras histórias fictícias, faz tempo que conhecemos seres humanos com alguma habilidade melhorada pela tecnologia, ou corpos quase totalmente biônicos, como o Ciborg, do universo dos quadrinhos da DC Comics. Mas, na vida real, essa tecnologia já é observável em experimentos científicos e protótipos de diversos tipos, como replicação de órgãos, devolução da visão e braços mecânicos comandados pelo pensamento.
As possibilidades são muitas e tendem a crescer de forma constante, ao aliar ciência e tecnologias cada vez mais avançadas, aproximando-se de nosso dia a dia. Nesse texto, a ideia é apresentar algumas dessas perspectivas e como elas já estão sendo aplicadas. Vamos lá?

Avanços em prol da saúde
As próteses são um tipo bem conhecido de tecnologia biônica. Substituindo membros como pernas e braços, elas tornam possível a ação de um atleta ou mesmo a possibilidade de uma criança escrever. Seguindo essa ideia, um pesquisador da Califórnia criou um chip que pode substituir o hipocampo, parte do cérebro que controla a memória e a compreensão espacial, o que será útil em casos de Alzheimer e derrames. No entanto, um implante no cérebro é muito mais complicado. Por isso, são necessários muitos testes.
Outra iniciativa de pesquisadores criou células artificiais que podem imitar a movimentação dos glóbulos brancos pelo corpo. Feitos de polímeros, esses protótipos são muito úteis para a medicina, uma vez que permitem levar remédios para locais necessários do corpo, ajudando a combater doenças como o câncer.
Pessoas com disfunções renais que passam por longos tratamentos de diálise terão seus problemas resolvidos: um rim artificial portátil, pequeno, leve e automatizado, que pode ser usado o tempo todo. Assim, não será mais preciso ficar horas ligado a um aparelho para que as necessidades fundamentais, como limpeza do sangue, sejam realizadas.
Outro órgão que também teve um modelo artificial pensado é o pâncreas. O modelo artificial portátil será uma mistura de duas tecnologias já existentes: a bomba de insulina e o monitor de glicose. Com isso, o pâncreas irá monitorar o açúcar no sangue e ajustar o nível de insulina necessário para o corpo, o que será muito benéfico para quem tem diabetes e precisa de monitoramento constante.
Outros estudos estão sendo realizados em várias partes do mundo, por universidades e governos, em busca de melhorias constantes nos tratamentos. Como é o caso do estudo que dura desde 1960 em torno do tecido ósseo que cresce sozinho. O importante é manter o foco e não desistir.
Tecnologia a serviço da qualidade de vida
Além de pesquisas envolvendo melhorias nos tratamentos de saúde, uma das maiores conquistas da era biônica são as próteses, uma interação entre a biologia e o design tecnológico. Quem cita essa relação é Hugh Herr, chefe do grupo de Biomecatrônica do Massachussets Institute of Technology (MIT) Media Lab, nos Estados Unidos, em conferência do TED no ano de 2015. O estudioso é um dos exemplos de suas próprias pesquisas: há 30 anos, ele perdeu as duas pernas em um acidente e utiliza membros biônicos.
No MIT, ele e sua equipe criaram a nova classe de próteses bio-híbridas inteligentes e exoesqueletos, que têm o objetivo de melhorar a qualidade de vida de milhares de pessoas com deficiências físicas. Um exemplo dos grandes avanços das pesquisas do instituto é uma prótese que reproduz uma perna inteira, do quadril ao pé, que possui um dispositivo capaz de imitar uma perna natural, possibilitando a pessoas amputadas andar e correr com níveis iguais a uma perna biológica.
Alguns braços biônicos funcionam com a força do pensamento, imitando os comandos biológicos enviados pelo cérebro ao corpo. Nesse caso, o braço artificial se liga ao cérebro pelos nervos motores e, quando a pessoa decide mexer o membro, os nervos enviam o sinal para o braço biônico, se tornando um processo natural. A intenção dos pesquisadores, como diz Hugh Herr, é melhorar ainda mais o processo e a utilização de membros biônicos, comunicando sensações, como temperatura e pressão, e adequando ao ritmo dos órgãos normais.
Uma das propostas mais inovadoras dos estudos dessa tecnologia são as próteses de retina, que podem trazer aos cegos a chance de ver princípios de luz, movimento e forma. As próteses estão em fase de testes. Sua particularidade é gravar informações visuais básicas por meio de uma câmera, transformá-las em sinais eletrônicos e enviar a eletrodos implantados no paciente.

Potencializando as capacidades humanas
Os maiores exemplos da era biônica são os atletas paralímpicos. Nas modalidades do atletismo, por exemplo, as próteses de pernas são o ingrediente principal. E os esportistas são esforçados, treinam bastante e precisam se adaptar a um novo modo de correr, ou mesmo aprender a correr, no caso de quem nasceu com a deficiência. Ao observar esses esportes, é possível enxergar como as potencialidades humanas são aumentadas e como a era biônica é fundamental para que eles existam.
Além das Paralimpíadas, há também dançarinos, bailarinos, escaladores e cientistas, como Hugh Herr, que tiveram suas vidas transformadas pela tecnologia. Em sua palestra sobre os estudos da biomecatrônica, ele conta como a biônica definiu sua corporalidade na ocasião de seu acidente. “Naquele momento, eu não vi meu corpo como quebrado. Eu argumentava que o ser humano jamais pode estar quebrado. A tecnologia é que está quebrada. A tecnologia é que é inadequada”, disse.
A expectativa é que as aplicações da era biônica estendam-se e sejam potencializadas por novas tecnologias. Assim, cada vez mais pessoas terão seus desafios superados e a realidade tenderá a se diferenciar ainda mais, oferecendo novas possibilidades e criando novas chances para as pessoas.

14.134 – Inteligência Artificial – Robô Laura Pode Revolucionar a Medicina


robo Laura
O Laura trabalha com tecnologia cognitiva e atua, ao lado de médicos, na prevenção da sepse (septicemia) e na diminuição do número de mortes causadas por essa doença violenta.
O software tem a capacidade de aprender analisando, entendendo e até conversando.
Jacson Fressatto é o idealizador do Robô Laura.
Ele perdeu a filha Laura aos 18 dias de vida. Recém-nascida, Laura foi vítima de septicemia, uma infecção silenciosa que tira a vida de milhares de pessoas em todo o mundo diariamente. O luto, que se transformou em uma caça por culpados, acabou revelando um trabalho, talvez uma missão para Jacson. Isso porque a sepse é ardilosa e, exatamente por causa da pequena Laura e de uma força paterna aliada ao conhecimento analítico, agora a doença está começando a perder dentro de seu próprio jogo. Isso porque o robô Laura nasceu.
O Robô Laura tem a capacidade de salvar mais de 12 mil vidas por ano no Brasil
Hoje, a septicemia atinge 2,5 milhões de brasileiros por ano. Dentro dessa conta, cerca de 250 mil acabam morrendo. No mundo, ela mata uma pessoa a cada 1 minuto e meio. Agora, com a Laura Networks, Jacson Fressatto está tentando levar o Robô Laura para os hospitais interessados. Para os hospitais filantrópicos brasileiros, Fressato até pretende doar a tecnologia. De acordo com o site oficial da empresa, o Robô Laura tem a capacidade de salvar mais de 12 mil vidas por ano no Brasil, reduzindo em 5% o índice de mortes. O objetivo é poupar tempo, recursos e vidas — tecnicamente, Laura é o primeiro robô cognitivo de gestão de risco.
O primeiro robô cognitivo em gestão de risco do mundo é brasileiro e já atua em alguns hospitais. Com foco em saúde, este robô é capaz de aprender e, a partir daí, identificar quando um paciente está vulnerável. Por isso, é preciso dedicar um tempo ensinando-o o que pode indicar perigo, como aumento de temperatura, por exemplo. Uma vez aprendido, ele consegue fazer o trabalho sozinho.

14.133 – Biologia – Sapo se protege de predadores fingindo ser uma víbora


sapo vibora
Pela primeira vez, especialistas estudaram o sapo da espécie Sclerophrys channingi, cuja padronagem da pele é parecida com a da víbora-do-gabão (Bitis gabonica), uma serpente venenosa comum na África subsariana. Os resultados da pesquisa foram divulgados em um artigo publicado no periódico Journal of Natural History.
Como é possível perceber na imagem acima, as manchinhas presentes no couro dos animais são semelhantes — e isso não é coincidência. Segundo os pesquisadores, durante sua evolução, o anfíbio desenvolveu essa aparência para se proteger de possíveis predadores.
“Nosso estudo é baseado em dez anos de trabalho de campo e na observação direta de pesquisadores que tiveram a sorte de ver em primeira mão o comportamento do sapo”, explicou o coautor da pesquisa, Eli Greenbaum, da Universidade do Texas (EUA), em comunicado. “Estamos convencidos de que este é um exemplo de imitação batesiana, em que uma espécie inofensiva evita predadores fingindo ser outra, que é perigosa ou tóxica.”
A víbora-do-gabão é o maior animal de seu gênero e também é a cobra que mais produz veneno no mundo. Fica fácil de entender por que os sapos querem se parecer com essa serpente, né? “Muitos predadores usam a visão para encontrar suas presas e, como a víbora é mortal, eles provavelmente reconhecem as marcações distintas e contrastantes a uma distância considerável e evitam o sapo por causa delas”, diz Chifundera Kusamba, do Centro de Pesquisa em Ciências Natuais da República Democrática do Congo, em nota.

O som do perigo
Durante seus estudos, os cientistas descobriram que, além da aparência física, os sapos também aprenderam a produzir sons parecidos com os emitidos pelas víboras. O objetivo, mais uma vez, é espantar os predadores.
Antes de atacar, a víbora-do-gabão inclina sua cabeça e emite um assobio alto. O anfíbio, por sua vez, produz um silvo descrito pelos especialistas como algo parecido com “o ar saindo de um balão”.
De acordo com os pesquisadores, as relações entre ambas as espécies já são conhecidas há muitos anos, mas esta foi a primeira vez que algum tipo de estudo direcionado a elas foi realizado. “Com base em várias fontes de evidência fornecidas em nosso estudo, estamos confiantes de que nossa hipótese para explicar a imitação é bem fundamentada”, disse Eli Greenbaum.
Com base em dados genéticos, os biólogos acreditam que a evolução dessas espécies ocorreu na mesma época, entre 4 e 5 milhões de anos atrás. Isso é explicado por todas as características que compartilham, além da região geográfica em que se encontram, que é a mesma.

14.132 – Seu cérebro faz de tudo para não lidar com a morte, segundo estudo


morte cerebral
Os cientistas descobriram que nosso cérebro associa a morte como algo que ocorre com os outros, não com nós mesmos. “Temos esse mecanismo primordial que indica que, quando o cérebro obtém informações que se vinculam à morte, algo nos diz que não é confiável, por isso não devemos acreditar”, afirmou Yair Dor-Ziderman, coautor do estudo, ao jornal britânico The Guardian.
Para os especialistas, evitar pensamentos sobre nossa morte pode ser crucial para vivermos o presente. Esse “escudo” provavelmente é criado na infância, assim que a criança se dá conta de que pode morrer um dia. De acordo Ziderman, imaginar a própria morte “vai de encontro a toda a nossa biologia, o que está nos ajudando a permanecer vivos”.
Os pesquisadores fizeram as análises por meio de um teste que avaliou o que acontecia com o sistema nervoso dos voluntários quando eram apresentados a determinados assuntos. O experimento foi feito assim: a atividade cerebral dos participantes era monitorada enquanto eles assistiam a uma tela que mostrava diversos rostos (incluindo os deles mesmos), intercalados com palavras. Metade das palavras era relacionada com morte, como “funeral” ou “enterro”.
Os resultados mostraram que, quando a face do próprio voluntário aparecia perto de termos mórbidos, o cérebro desligava seu sistema responsável por prever o futuro. Segundo Avi Goldstein, principal autor da pesquisa, esse seria um mecanismo para nos protegermos contra ameaças ou mesmo contra a ideia de que vamos morrer.
Para contornar esses pensamentos, a central de comando do nosso corpo foca nesse risco sobre sendo dos outros – e não de nós mesmos. “Não podemos negar racionalmente que vamos morrer, mas pensamos nisso mais como algo que acontece com outras pessoas”, acrescenta Ziderman.

14.131 – O Rádio Transistorizado


radio Nissei
Rádio é Nissei, o resto eu não sei

Receptor de rádio portátil que usa circuito baseado em transistor. Os primeiros rádios foram desenvolvidos em 1954, seguido da invenção do transistor que foi em 1947, tornaram-se o dispositivo de comunicação eletrônico mais popular da história, sendo produzidos bilhões nos anos de 1960 a 1970. Seu tamanho de bolso provocou uma mudança nos hábitos de escuta de música, permitindo que as pudessem ouvir música em qualquer lugar. No começo da década de 1980, os rádios AM baratos foram substituídos por aparelhos com melhor qualidade de áudio como, CD players portáteis, leitores de áudio pessoais, e caixas de som.

Antes do transistor ter sido inventado, os rádios usados eram criados usando válvula eletrônica. Embora tenham sido criados rádios portáteis valvulados, eles eram volumosos e pesados, devido às grandes baterias necessárias para abastecer o alto consumo de energia dos tubos.
Bell Laboratories demonstrou o primeiro transistor em 23 de dezembro de 1947. Depois de obter a proteção das patentes, a empresa realizou uma coletiva de imprensa em 30 de junho de 1948, onde foi demonstrado um protótipo de rádio transistor.
Há muitos pretendentes ao título de primeira empresa a produzir rádios transistorizados. Texas Instruments havia demonstrado a utilização de rádios AM (modulação de amplitude) em 25 de maio de 1954, mas o seu desempenho foi bem inferior ao de modelos valvulados. Um rádio foi demonstrado em agosto de 1953 em uma Feira em Düsseldorf pela empresa alemã Intermetall. Foi construído com quatro de transistores feitos à mão pela Intermetall. No entanto, como acontece com as primeiras unidades, a Texas Instruments (e outros) construíram apenas protótipos. RCA havia demonstrado um protótipo de rádio transistorizado em 1952, mas Texas Instruments e Regency Divisão de IDEA, foram os primeiros a oferecerem um modelo de produto a partir de outubro 1954.
Durante uma viagem aos Estados Unidos em 1952, Masura Ibuka, fundador da Tokyo Telecommunications Engineering Corporation (atual Sony), descobriu que a AT&T estava prestes a tornar o licenciamento para o transistor disponível. Ibuka e seu parceiro, o físico Akio Morita, convenceu o Ministério do Comércio e Indústria Internacional (MITI) japonês para financiar a taxa de licenciamento $25.000. Durante vários meses Ibuka viajou por todo os Estados Unidos tomando ideias dos fabricantes de transistores americanos. Com as ideias melhoradas, Tokyo Telecommunications Engineering Corporation fez seu primeiro rádio transistor funcional em 1954. Dentro de cinco anos, Tokyo Telecommunications Engineering Corporation cresceu de sete funcionários para cerca de quinhentos.
Outras empresas japonesas logo seguiram a sua entrada no mercado americano e o total de produtos eletrônicos exportados do Japão em 1958 aumentou 2,5 vezes em comparação a 1957.

Pocket_radio_open_english

14.130 – Tecnologia – Fim das Obsoletas Rádios AM


radio am
Enquanto o sinal de rádio FM tem sido desligado pelo mundo desde janeiro do ano passado, no Brasil ele ainda é bastante popular. Já o que está perdendo espaço é o AM, cujas emissoras têm procurado dials na “frequência modulada” para alocar seus espaços e facilitar o acesso aos ouvintes.
A migração já está ocorrendo há algum tempo e agora ela deve evoluir em uma velocidade maior. O então presidente da República em exercício, Rodrigo Maia, assinou o decreto que abriu o prazo de 180 dias para as rádios que ainda operam na faixa AM solicitarem a migração para a FM. A medida atendeu a um pleito da ABERT.
As rádios AM que atuam em cobertura local, regional ou nacional, com interesse na migração, deverão solicitar a mudança ao Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC).
Atualmente, das 1.781 estações em “amplitude modulada”, 1.332 já pediram a adaptação da outorga. Delas, 619 chegaram a assinar o aditivo contratual. O decreto fará com que até 449 emissoras AM consigam dar entrada na alteração. Da mesma forma que foi feito na primeira fase, a ABERT ficará à disposição para orientar as emissoras com interesse na migração a respeito de todas as etapas do processo.

14.129 – Nobel de Medicina 2019


nobel medicina 2019
Os vencedores do Prêmio Nobel de Medicina de 2019 foram anunciados, são eles William Kaelin e Gregg Semenza, dos EUA, e Sir Peter Ratcliffe, do Reino Unido. O prêmio foi dado pelas suas descobertas sobre como as células do nosso corpo percebem e se adaptam aos níveis de oxigênio disponível no ambiente.
Os três pesquisadores desenvolveram seus trabalhos individualmente desde os anos 1990. Juntas, suas pesquisas descrevem um importante mecanismo fisiológico – a resposta hipóxica das células – essencial para que indivíduos consigam sobreviver em lugares mais altos, onde há menor concentração de oxigênio.
Além de desvendar como esse mecanismo funciona, os organizadores do Nobel ressaltaram a importância das descobertas para futuras aplicações médicas. De acordo com o comunicado oficial, “suas descobertas também abriram o caminho para novas estratégias promissoras para combater a anemia, o câncer e muitas outras doenças.”
O que os pesquisadores descobriram
Para entender o funcionamento do mecanismo de resposta hipóxica, é preciso relembrar como é o transporte de oxigênio no corpo humano.
Ao entrar pelo sistema respiratório, o oxigênio vai para as hemoglobinas, responsáveis por levá-lo pela corrente sanguínea para o restante dos nossos tecidos. O oxigênio é um dos principais combustíveis da respiração celular, processo que acontece no interior das células fornece energia para as funções vitais do corpo.
Dentro das células, quem se encarrega disso é a mitocôndria. Lembrou das aulas do colégio? Pois é. Com a exceção de algumas bactérias e fungos, o oxigênio é indispensável para o metabolismo das células (as transformações químicas que liberam energia).
Quando se está em um ambiente com escassez de oxigênio (regiões montanhosas, por exemplo), o corpo logo começa a produzir mais hemoglobina – quanto mais células vermelhas trabalhando, maior será o aproveitamento do oxigênio disponível. Quando isso acontece, o corpo também regula a atividade metabólica das células para se adaptar ao novo cenário.
A ciência já sabia disso desde o século 20, mas os detalhes do funcionamento desse sistema a nível molecular ainda era um mistério. E é aí que entram o trabalho dos cientistas.
Gregg Semenza, professor da Universidade John Hopkins, identificou um complexo de proteínas e deu o nome de HIF – em inglês, é a sigla para “fator induzível por hipóxia” (“hipóxia” significa “baixa concentração de oxigênio”). O HIF é rapidamente destruído pelo corpo em uma situação normal. Quando o nível de oxigênio está baixo, porém, sua concentração aumenta.
Unindo os trabalhos de Peter Ratcliffe, que trabalha na Universidade de Oxford e no Instituto Francis Crick, e de William Kaelin, que dá aulas na Universidade de Harvard, os cientistas descobriram que o HIF faz com esse gene aumente a produção de um hormônio chamado eritropoietina (EPO), que por sua vez, faz aumentar a quantidade de células vermelhas que transportam oxigênio.
Qual a importância dessa descoberta
Entender esse mecanismo pode ajudar no desenvolvimento de novos tratamentos no futuro para problemas como anemia, câncer e outras doenças.
Na China, por exemplo, um medicamento contra anemia já está à venda. O Roxadustat se aproveita do HIF para enganar o corpo, fazendo-o pensar que está em altas altitude, estimulando a produção de hemoglobinas. No momento, o remédio passa por regulação para entrar no mercado europeu.
O Nobel não é a primeira grande conquista do trio de cientistas. Em 2016, eles venceram o Prêmio Albert Lasker de Pesquisa Médica Básica – uma importante premiação que, frequentemente, canta a bola de quem serão os próximos vencedores do Nobel.
A cerimônia oficial com os vencedores desta e outras categorias do Nobel acontece no dia 10 de dezembro, e os três cientistas dividirão igualmente a quantia de 9 milhões de coroas suecas (R$3,7 milhões, aproximadamente).

14.128 – Cinema – Ponha um Sorriso Nessa Cara!


coringa no cinema
Se Beber, Não Case; Escola de Idiotas; Um Parto de Viagem. À primeira vista, é difícil imaginar que Todd Phillips, diretor de todas essas produções, um dia estaria envolvido em um filme como Coringa – dramático, tenso e violento.
Joaquin Phoenix, por outro lado, é conhecido por interpretar papéis excêntricos – o que combina muito com sua personalidade. Quando ele foi confirmado como o vilão, muita gente comemorou: a opinião geral era que o palhaço cairia como uma luva para ele.
O começo da ideia
Phillips foi o idealizador de Coringa. Em 2016, ele apresentou o projeto para os executivos da Warner, mas revela que não foi nada fácil convencê-los. “Não foi algo da noite para o dia”, disse ele. “Basicamente, eu estava dizendo para pegar um personagem com 75 anos de legado consolidado e criar uma história de origem a ele.”
A ideia do diretor era usar o mundo das histórias em quadrinhos como pano de fundo para fazer o que ele chama de “filmes de estudo de personagem”: histórias como Um Estranho no Ninho, Serpico e O Rei da Comédia, este último uma das grandes inspirações para Coringa.
“Nos últimos cinco, dez anos, os filmes de super-heróis dominaram o cinema. Eles são ótimos, mas não permitem uma abordagem profunda do personagem principal.” Phillips cita A Rede Social, sobre a história de Mark Zuckerberg, criador do Facebook, como um exemplo recente do tipo de produção que ele queria fazer.
Phillips conta que, nas primeiras conversas com o pessoal da Warner, sua sugestão era que a DC Comics criasse um selo de filmes independentes. O “DC Black”, como ele mesmo chamou, serviria para que diretores criassem histórias originais, sem a necessidade de estarem amarradas com o universo cinematográfico de Liga da Justiça, Esquadrão Suicida e cia.
“Claro que, para a Warner, filmes independentes são aqueles cujo orçamento é de US$ 50 milhões, mas o legal dessas histórias é que elas não precisariam ter grandes efeitos especiais, explosões ou prédios caindo.” A ideia não vingou, mas Phillips conseguiu que Coringa saísse do papel.

Dupla dinâmica
Phoenix foi a primeira escolha para o personagem principal. Na verdade, Phillips escreveu o roteiro com ele em mente. “É um dos grandes dessa geração”, elogia o diretor. Mas a primeira reação do ator não foi bem nessa linha.
“Quando recebi o convite, pensei: ‘De jeito nenhum vou fazer isso!’”, disse o ator. Phoenix estava relutante pois não fazia ideia de qual seria a abordagem ideal. Mas assim que Phillips apresentou suas ideias para o filme, ele mudou de opinião.
“O fato desse Coringa dar risadas quase que de forma dolorosa me deixou bastante interessado”, conta Phoenix. “Nunca havia pensado nisso.” Joaquin disse que foi a visão de Phillips sobre o personagem que o fez encarar o papel. “Todd sabia o que estava fazendo. Era o cara certo para dirigir esse filme.”
A dupla dinâmica, então, estava formada. Os dois mergulharam de cabeça na produção. “Nós íamos para o set duas horas antes do início das filmagens e, depois que o dia terminava, conversávamos por mais duas horas sobre o filme”, lembra Phoenix.

Quadrinhos? Hoje não
Tanto Phillips quanto Phoenix bateram na mesma tecla durante a conversa: Coringa não é uma adaptação dos quadrinhos. “É claro que consultamos algo aqui e ali, afinal, não criamos o personagem nem Gotham City”, esclarece o diretor, que cita A Piada Mortal, de 1989, como uma dessas fontes de consulta esporádica. “Mas nós tivemos liberdade para fazer o que quiséssemos.”
Todd se baseou, principalmente, nas lembranças que tinha das histórias que lia quando criança. Ele defende que a ideia, desde o começo, era fazer algo com o máximo de originalidade – opinião compartilhada por Phoenix. “Eu não quis fazer algo baseado em algum quadrinho ou performance anterior”, disse o ator. “Era importante que seguíssemos nosso próprio caminho.”
Ora, se as páginas dos gibis não foram o foco da inspiração, o que seria? Resposta: anos 1970. “Foi nessa época que, na minha opinião, foram feitos os maiores filmes de estudo de personagem”, confessa Phillips. O diretor, então, revisitou os longas da época, como os dirigidos por Martin Scorsese: Taxi Driver, Touro Indomável, O Rei da Comédia…Todos eles, veja só, estrelados por Robert De Niro, que, não por acaso, está em Coringa.
Sem as versões do vilão dos quadrinhos como base, Phoenix e Phillips tentaram criar uma versão mais humana para o personagem. Fleck é um cara desajustado, que sofreu bullying e tem traumas de infância. O desafio da dupla era grande: como transformar uma pessoa vulnerável (e que gera empatia no público) em um vilão enlouquecido?
Phoenix conta que as primeiras cenas gravadas foram as que ele está totalmente vestido como o Coringa. Para ele, apesar da dificuldade inicial em achar o tom do personagem, o processo inverso o ajudou na composição de Fleck. “Dessa maneira, pude entender melhor como o palhaço vivia dentro daquele cara, e como ele foi lentamente evoluindo até chegar no Coringa.”
Para a maquiagem, a produção elaborou mais de 100 versões de rostos de palhaço, até que Todd definiu qual seria. Outra parte difícil de definir foi a risada do Coringa. Phoenix confessou que demorou até encontrar uma versão que o agradasse, e disse só resolveu esse problema quando as filmagens já tinham começado.
Há um futuro para Coringa?
Quando perguntados sobre uma possível sequência, ambos desconversaram. “Acho que vai depender da audiência”, disse Phoenix. “Isso é com o estúdio, mas eu topo fazer qualquer coisa que envolva o Joaquin”, falou Phillips.
O ponto é que Coringa não precisa de uma continuação. “A ideia do ‘DC Black’ foi pensada justamente para proteger esse filme.” Phillips também negou que o próximo Batman, dirigido por Matt Reeves, vá se conectar de alguma forma com o longa. Mas não escondeu o desejo de comandar outra história independente. “Meu herói favorito é o Demolidor, mas se pudesse, adoraria fazer um filme sobre o Rorschach [personagem de Watchmen] nessa mesma pegada intimista.”

A recente controvérsia
Nas últimas semanas, criou-se uma discussão em torno da violência do filme – e o que ela poderia incitar. Para alguns críticos, Coringa pode ser potencialmente perigoso por, de certa forma, enaltecer um personagem mau, fazendo com que pessoas se identificassem com ele da maneira errada.
Nos EUA, por exemplo, o Exército tem tomado cuidado para que ataques não aconteçam durante a estreia do longa. A polêmica chegou até Phoenix: recentemente, ele abandonou uma entrevista após ser questionado se o filme poderia inspirar pessoas com os mesmos problemas do Coringa a fazer o mesmo que o vilão.
O papo com Phoenix e Phillips, porém, aconteceu antes de tudo isso. Mas ambos defendem que o personagem nunca foi pensado como alguém com distúrbios mentais ou com o qual as pessoas se identificariam (e defenderiam). “Eu sempre acreditei que, de um jeito ou de outro, filmes funcionam como um espelho, que reflete o que está acontecendo com a sociedade naquele momento”, disse Todd. “Nosso objetivo era que a história funcionasse de maneiras diferentes para cada pessoa que assistir. (…) E se elas começarem a discutir a partir do filme, é uma coisa boa.”

14.127 – Mega de ☻lho no Nobel 2019


Nobel 2019
Embora possam parecer completamente díspares, notei nos Nobel de ciências deste ano – William G. Kaelin Jr, Sir Peter J. Ratcliffe e Gregg L. Semenza pela descoberta dos mecanismos moleculares pelos quais as células monitoram e se adaptam à disponibilidade de oxigênio, em Medicina ou Fisiologia; a incomum divisão do prêmio de Física por dois temas não diretamente relacionados, com James Peebles pela sua teoria sobre a natureza da Radiação Cósmica de Fundo e Michel Mayor e Didier Queloz pela descoberta do primeiro planeta extrassolar orbitando uma estrela na sequência principal; e John B. Goodenough, M. Stanley Whittingham e Akira Yoshino pelo desenvolvimento das baterias de íons de lítio, no de Química – um traço comum de revolução na forma como a Humanidade vê a si mesma e seu lugar no Universo.
Em todos estes casos, são a genética e a fisiologia mostrando a evolução pela seleção natural, a teoria revolucionária lançada por Charles Darwin no século XIX, em ação os seres humanos modernos no tempo relativamente curto da saída de nossa espécie, o Homo sapiens, de seu berço na África, por volta de 100 mil anos atrás.

Já os prêmios de Física são mais minha seara. No caso de Peebles, o arcabouço teórico que ele ajudou a criar deu fonte e “função” à Radiação Cósmica de Fundo, o “eco” do Big Bang, abrindo caminho para observação e análise de pequenas diferenças nela, as chamadas anisotropias, que influenciaram a emergência e concentração da matéria “comum” (bariônica) no Universo na forma das atuais estrelas, galáxias e filamentos de gás intergalático, a chamada “rede cósmica”, que preenchem nosso Universo.
Mais do que isso, no entanto, este arcabouço, unido às observações em terra e de satélites como COBE, WMAP e, mais recentemente, o Planck, mostraram que esta matéria bariônica responde por apenas cerca de 5% de tudo que existe, com os restantes 95% compostos pelas misteriosas, e de natureza desconhecida, matéria e energia escuras, forçando a Humanidade a um humilde e socrático “só sei que (quase) nada sei” sobre do que é feito Universo que nos cerca.

14.126 – Astrofísicos detectam ‘sol’ que poderia ter planeta gêmeo da Terra


terra e lua
Uma equipe científica internacional descobriu um irmão do Sol em idade e composição química. Pesquisadores enfatizam não ser simplesmente um irmão, mas um gêmeo solar, porque a estrela poderia ter um planeta semelhante ao nosso.
“Se tivermos sorte, e a nossa estrela irmã do Sol tiver um planeta, e o planeta for rochoso, na zona de habitabilidade, e finalmente, se esse planeta tiver sido ‘contaminado’ pelas sementes de vida da Terra, então temos o que nós sempre sonhamos — uma Terra 2.0, a orbitar um Sol 2.0”, comentou o investigador do Instituto de Astrofísica e Ciências Espaciais (IA) de Portugal, Vardan Adibekyan.
Segundo asseguram os pesquisadores, irmãos solares são bons candidatos à busca de vida, uma vez que existe a possibilidade de que a vida tenha sido transportada entre planetas ao redor das estrelas do aglomerado solar. A transferência de vida entre sistemas exoplanetários é chamada de panspermia interestelar.
“Alguns modelos teóricos mostram uma probabilidade não negligenciável da vida se ter espalhado a partir da Terra, até outros planetas ou sistemas exoplanetários, durante o período de bombardeamento tardio do Sistema Solar”, observou o astrofísico.
Irmãos solares são milhares de estrelas formadas no mesmo aglomerado que o Sol há aproximadamente 4,6 bilhões de anos. Com o tempo, as estrelas do aglomerado se dissolvem e se dispersam por toda a nossa galáxia, portanto, é muito difícil encontrá-las.
Para detectar o novo irmão solar, denominado HD 186 302, de idade e composição química semelhante ao do nosso Sol, cientistas analisaram 230.000 dados espectrais do projeto AMBRE e informações da missão ESA Gaia.
A equipe do IA planeja iniciar uma missão de busca planetária em torno dessa estrela usando os espectrógrafos HARPS e ESPRESSO5.

14.125 – Cinema: Seria cômico, se não fosse Trágico – O Coringa


coringa
Elenco Joaquin Phoenix – Robert de Niro
Bruce Wayne
Dante Pereira-Olson
Martha Wayne
Carrie Louise Putrello Randall
Glenn Fleshler Hoyt Vaughn
Josh Pais Gene Ufland
Marc Maron Dr. Sally Sondra James
Barry O’Donnell Murphy Guyer
Penny – jovem
Hannah Gross
Carl Brian Tyree Henry
Ator Bryan Callen
Arthur Fleck (Joaquin Phoenix) trabalha como palhaço para uma agência de talentos e, toda semana, precisa comparecer a uma agente social, devido aos seus conhecidos problemas mentais. Após ser demitido, Fleck reage mal à gozação de três homens em pleno metrô e os mata. Os assassinatos iniciam um movimento popular contra a elite de Gotham City, da qual Thomas Wayne (Brett Cullen) é seu maior representante.
☻ Mega Crítica
Quando Christopher Nolan assinou contrato para Batman Begins, trouxe consigo a proposta de uma aventura bem mais sombria, condizente com o clima pesado das ruas de Gotham City. Por mais que tenha sido extremamente bem sucedido, havia ainda limitações dentro de tal proposta no sentido de manter os filmes do Homem-Morcego dentro de uma classificação indicativa acessível a todo público. Em Coringa, Todd Phillips vai além e entrega um filme sujo, corajoso e transgressor, tão condizente com a essência de seu personagem-título quanto com a ideia de uma Gotham City caótica, decadente e sem qualquer regra. Ainda bem.
Neste sentido, é muito interessante como este Coringa dialoga com o histórico do personagem, tanto no cinema quanto nos quadrinhos. Sem qualquer referência prévia, trata-se de uma história original que reinventa características básicas do personagem, sem jamais modificá-lo de fato ou citar quaisquer de seus antecessores. Ao mesmo tempo, se apropria da memória coletiva em relação às versões anteriores, não propriamente no sentido de compará-los mas de saber previamente do que o personagem é capaz: o Coringa é doentio e não vê problema algum em ser extremamente violento, o espectador sabe bem disto. Tal consciência traz ao filme um clima de tensão onipresente, especialmente quando os primeiros indícios da eclosão do Palhaço do Crime começam a vir à tona.
Por outro lado, Todd Phillips também manipula a narrativa de forma que a loucura do Coringa, ou melhor, de Arthur Fleck seja não apenas justificável como, em um primeiro momento, quase perdoável. A partir de um minucioso estudo de personagem acompanhamos a saga de Arthur a cada novo fracasso, assistindo à mudança da meiguice inicial de Joaquin Phoenix rumo a um personagem cada vez mais duro e decidido, em todas as etapas de uma transformação decorrente muito mais dos vícios da sociedade do que por falhas suas. Não há pressa em buscar sequências emblemáticas, apenas o tempo necessário para justificar cada passo dado. Quando elas surgem o mérito é todo do roteiro, por respeitar este tempo próprio de desenvolvimento, e, é claro, de Joaquin Phoenix, absolutamente soberbo.
Se Phoenix tivesse apenas se sujeitado à transformação física e criado esta risada que provoca calafrios, seja pelo som emitido ou pela conjuntura de sua existência, já seria suficiente para um belo trabalho. Entretanto, ele vai além ao entregar uma variedade imensa de perfis multifacetados que compõem o personagem, provocando espanto e admiração em doses fartas. É como se este Coringa fosse uma evolução psicológica das versões anteriores, de Jack Nicholson e Heath Ledger, agora sem amarras para que possa soltar sua loucura e violência sem pudores. Simples assim.
Paralelamente, o roteiro escrito por Scott Silver e o próprio diretor traz um verdadeiro achado, ao estabelecer um subtexto político em torno da transformação de Arthur Fleck no Coringa. Pouco a pouco, a luta de classes chega a Gotham City de forma absolutamente orgânica, com direito a uma referência deliciosa a Tempos Modernos, provocando um levante dos oprimidos junto à elite local, cujo representante maior é… Thomas Wayne. Sim, Coringa também passa pela origem do Batman, mais uma vez dialogando com a memória coletiva, entregando uma versão inédita de uma história pra lá de batida.
Claramente inspirado nos filmes urbanos de Martin Scorsese, em especial Taxi Driver com sua estética das ruas e fotografia suja, Coringa ainda apresenta uma apurada direção de arte na construção deste filme de época e um figurino preciso, surrado e ao mesmo tempo recorrente às roupas e cores usuais do personagem-título. Em relação ao restante do elenco, claramente ofuscado por Phoenix, merece destaque a desenvoltura de Robert De Niro como o apresentador de TV Murray Franklin, óbvia referência (invertida) ao seu papel em O Rei da Comédia, dirigido pelo mesmo Scorsese lá em 1982.
Violento e de uma efervescência política vibrante, Coringa é um novo capítulo na história do Palhaço do Crime que será lembrado por muitos e muitos anos. Entretanto, independente de sua ligação prévia, trata-se também de um filme brilhante pela forma como foi construído: a partir de um fundo psicológico calcado apenas na vida real, de forma que sua transformação seja verossímil não só em Gotham City, mas em qualquer cidade nas mesmas condições de desigualdade social. Fascinante.

coringa poster

14.124 – Prótese biônica tem resposta mais rápida do que mão humana


bionica 2019
Cientistas da Escola Politécnica Federal de Lausanne, na Suíça, anunciaram o desenvolvimento de uma prótese biônica capaz de traduzir os comandos enviados pelo cérebro dos usuários e responder mais depressa do que uma mão humana. O dispositivo combina elementos de robótica com tecnologias de neuroengenharia e permite que pessoas amputadas tenham muito mais controle sobre os movimentos e funções da mão prostética.

Mão biônica
O funcionamento da prótese está baseado em sensores que são colocados no coto da pessoa amputada e que são capazes de detectar a atividade muscular quando o paciente tenta movimentar os dedos – que já não estão lá. Além disso, os pesquisadores desenvolveram um algoritmo de machine learning que, ademais de decodificar os impulsos neuromusculares enviados pelo cérebro da pessoa e que são registrados pelos sensores, interpreta os sinais e aprende os movimentos para treinar o sistema e melhorar o desempenho da prótese.
De acordo com os cientistas, para que o algoritmo aprenda a decodificar as intenções do usuário e traduzi-las nos movimentos dos dedos da prótese, a pessoa precisa realizar uma variedade de movimentos para que o sistema aprenda a identificar qual atividade muscular corresponde a qual ação.
Com isso, depois que o algoritmo entende as intenções do usuário, o amputado consegue controlar cada dedo da mão biônica de maneira independente. Mas tem mais: a prótese também é equipada com sensores de pressão que “ensinam” o algoritmo a reagir sempre que o dispositivo entra em contato com um objeto qualquer para que os dedos se fechem automaticamente sobre ele, mesmo na ausência de informações visuais.
O resultado dessa combinação de tecnologias faz com que a resposta do equipamento seja como o de uma mão de verdade. Bem, na verdade, a reação é ainda mais rápida. Para se ter ideia, quando seguramos algo e esse objeto começa a deslizar de nossa mão, nós temos apenas um par de milissegundos para reagir e não deixar a coisa cair. Já a prótese – que possui sensores nos dedos – consegue estabilizar o objeto e segurá-lo antes mesmo de o cérebro se dar conta que ele está escapulindo e possa responder.

Próteses do futuro
O sistema foi testado por 10 pessoas – 3 amputadas e 7 não – e os resultados foram bastante impressionantes, tanto que os cientistas por trás do projeto acreditam que, além de ser aplicada a próteses, a tecnologia poderia ser empregada em interfaces cérebro-computador com o objetivo de ajudar pacientes com mobilidade limitada.
Ainda é necessário refinar o algoritmo e trabalhar no sistema até que as mãos biônicas possam sair dos laboratórios e sejam disponibilizadas para quem precisa delas. Já sobre os pacientes paralisados, considerando que já existem iniciativas focadas no desenvolvimento de dispositivos superflexíveis que podem dar origem a implantes cerebrais com potencial de melhorar a comunicação de pessoas incapazes de se mover com máquinas e ajudar que elas se ganhem mais autonomia – a Neuralink, fundada por Elon Musk, é uma das startups trabalhando nessa área –, os avanços não devem demorar em chegar.

14.123 – Neuro Prótese para Paraplégicos


Uma pesquisa liderada pelo neurocientista brasileiro Miguel Nicolelis permitiu que pacientes paraplégicos caminhassem. O trabalho foi publicado na revista Scientific Reports e utiliza várias abordagens combinadas para o feito. A principal delas é um dispositivo de estimulação muscular e de uma interface cérebro-máquina, que permite controlar outros aparelhos por meio do pensamento.
Na prática, o paciente imagina que sua perna está se movendo, o que aciona a contração de oito músculos naquele membro e permite que os passos sejam dados. Os dois participantes do estudo possuem paraplegia crônica e, de acordo com o artigo da equipe de Nicolelis, foram capazes de caminhar em segurança apoiados entre 65% e 70% de seu peso corporal. Além disso, deram 4580 passos durante os testes.
Melhoras
O trabalho relata que foram encontradas melhoras cardiovasculares e houve menor dependência de assistência para se locomover. Outro benefício reportado pela equipe foi uma recuperação neurológica parcial dos dois pacientes. Um deles tem 40 anos e sofreu a lesão medular há quatro, enquanto o outro tem 32 e sofreu a lesão há 10 anos.

A pesquisa faz parte do projeto Andar de novo (Walk Again Project), que é um consórcio internacional sem fins lucrativos reunindo pesquisadores dedicados a estudar a recuperação de pacientes com lesões medulares.
Esta não foi a primeira demonstração de quão promissor é o dispositivo desenvolvido pela equipe de Nicolelis, que lidera um grupo de pesquisadores na área de Neurociência na Duke University, nos Estados Unidos. Uma pesquisa desenvolvida por ele permitiu que um jovem paraplégico chutasse uma bola durante a abertura da Copa do Mundo de 2014, no Brasil.

14.122 – ONG constrói barreira para filtrar plástico de região do Oceano Pacífico


barreira
Sediada na Holanda, a organização não-governamental The Ocean Cleanup busca remover a poluição por plástico presente em um região conhecida como Grande Ilha de Lixo do Oceano Pacífico. Para isso, a instituição criou uma enorme barreira mecânica para “filtrar” a poluição com a ação da própria correnteza do oceano.
Versões anteriores do sistema apresentavam falhas de funcionamento que deixavam o plástico escapar, mas a organização anunciou que o problema foi resolvido. Até agora, a barreira jSediada na Holanda, a organização não-governamental The Ocean Cleanup busca remover a poluição por plástico presente em um região conhecida como Grande Ilha de Lixo do Oceano Pacífico. Para isso, a instituição criou uma enorme barreira mecânica para “filtrar” a poluição com a ação da própria correnteza do oceano.
Versões anteriores do sistema apresentavam falhas de funcionamento que deixavam o plástico escapar, mas a organização anunciou que o problema foi resolvido. Até agora, a barreira já reteve pedaços de plástico de todos os tamanhos.
Segundo a Administração Nacional Oceânica e Atmosférica (NOAA), dos Estados Unidos, a poluição de plástico que afeta o Oceano Pacífico não é constituída somente de garrafas e copos de plástico boiando na superfície da água. Na verdade, a poluição se estende até o solo oceânico — e a maior parte do lixo é de micro plásticos, partículas com dimensões de pouco mais de cinco milímetros.á reteve pedaços de plástico de todos os tamanhos.

Segundo a Administração Nacional Oceânica e Atmosférica (NOAA), dos Estados Unidos, a poluição de plástico que afeta o Oceano Pacífico não é constituída somente de garrafas e copos de plástico boiando na superfície da água. Na verdade, a poluição se estende até o solo oceânico — e a maior parte do lixo é de micro plásticos, partículas com dimensões de pouco mais de cinco milímetros.
Um estudo conduzido pela The Ocean Cleanup mostrou que o micro plástico não boiava, mas normalmente ia diretamente para o fundo do oceano. Então pedaços de plástico maiores costumavam ficar acumulados na superfície.

14.121 – INVENTORES – Guglielmo Marconi


Marconi
(Bolonha, 25 de abril de 1874 — Roma, 20 de julho de 1937) foi um físico e inventor italiano. Em língua portuguesa, é por vezes referido por Guilherme Marconi.
Inventor do primeiro sistema prático de telegrafia sem fios (TSF), em 1896. Marconi se baseou em estudos apresentados em 1897 por Nikola Tesla para em 1899 realizar a primeira transmissão através do Canal da Mancha. A teoria de que as ondas electromagnéticas poderiam propagar-se no espaço, formulada por James Clerk Maxwell, e comprovada pelas experiências de Heinrich Hertz, em 1888, foi utilizada por Marconi entre 1894 e 1895. Tinha apenas vinte anos, em 1894, quando transformou o celeiro da casa onde morava em laboratório e estudou os princípios elementares de uma transmissão radiotelegráfica, uma bateria para fornecer eletricidade, uma bobina de indução para aumentar a força, uma faísca elétrica emitida entre duas bolas de metal gerando uma oscilação semelhante as estudadas por Heinrich Hertz, um Coesor, como o inventado por Édouard Branly, situado a alguns metros de distância, ao ser atingido pelas ondas, acionava uma bateria e fazia uma campainha tocar.
Em 1896, foi para a Inglaterra, depois de verificar que não havia nenhum interesse por suas experiências na Itália. Em 1899, teve sucesso na transmissão sem fios do código Morse através do Canal da Mancha. Dois anos mais tarde, conseguiu que sinais radiotelegráficos (a letra S do código morse) emitidos de Inglaterra, fossem escutados claramente em St. John’s (Terra Nova, hoje parte do Canadá), atravessando o Atlântico Norte. A partir daí, fez muitas descobertas básicas na técnica rádio.
Em 1909, 1700 pessoas são salvas de um naufrágio graças ao sistema de radiotelegrafia de Marconi. Em 1912 a companhia de Marconi já produzia aparelhos de rádio em larga escala, particularmente para navios. Em 1915, durante e depois da Primeira Guerra Mundial assumiu várias missões diplomáticas em nome da Itália e em 1919 foi o delegado italiano na Conferência de Paz de Paris.
Em sua infância, passava muito tempo viajando com a sua mãe Anna, que adorava a região do porto de Livorno, na costa oeste da Itália, onde vivia sua irmã, dessas viagens a Livorno, surge o amor de Marconi pelo mar. Em Livorno estava instalada uma academia da marinha real italiana, a Regia Marina, Marconi tinha o incentivo do pai (Giuseppe) para entrar na academia naval, mas não conseguiu, no entanto, seu amor pelo mar o acompanhou durante toda a vida. Em 1920, partiu para a sua primeira viagem no “Elettra”, um navio de 61 metros que comprou e equipou para ser seu laboratório no estudo de ondas curtas e também seu lar. Além de sua família, as cabines do Elettra recebiam visitantes ilustres, entre eles os reis da Itália, da Espanha e Jorge V e a rainha Maria de Teck. As festas no Elettra tornaram-se célebres pelas músicas transmitidas pelo rádio diretamente de Londres. A empresa de Marconi montou o novo Imperial Wireless Scheme, destinado a montar estações de ondas curtas em todo o território britânico. Em 1929, em reconhecimento por seu trabalho, recebeu do rei Vítor Emanuel III da Itália o título de marquês. Em 12 de outubro de 1931 acendeu, apertando um botão em Roma, as luzes do Cristo Redentor na noite de inauguração da estátua.
Em outubro de 1943, a Suprema Corte dos Estados Unidos considerou ser falsa a reclamação de Marconi que afirmava nunca ter lido as patentes de Nikola Tesla e determinou que não havia nada no trabalho de Marconi que não tivesse sido anteriormente descoberto por Tesla. Infelizmente, Tesla tinha morrido nove meses antes.
No entanto, muito embora Marconi não tenha sido o inventor de nenhum dispositivo em particular (ao usar a bobina de Ruhmkorff e um faiscador, como antes o haviam feito De Forest e Tesla na emissão, repetiria Hertz, gerando as ondas hertzianas (Experimento de Hertz com um “Ressoador de Hertz”) e usou o radiocondutor-detector Coesor de Branly na recepção, acrescentando a antena de Popov a ambos os casos) parece ser possível afirmar que Marconi é, na verdade, o inventor da rádio, (na forma da Radiotelegrafia e Radiotelefonia, Telefonia sem fio) visto que ninguém, antes dele, tivera a ideia de usar as ondas hertzianas com os objectivos de forma prática ou rotineira, de comunicação (exceto Landell de Moura).
Lee de Forest o havia feito, mas apenas para testar a sua válvula eletrônica.
Tendo seu valor reconhecido, Marconi foi agraciado em 1909, recebendo juntamente com o alemão Karl Ferdinand Braun o Nobel de Física. Braun é o descobridor dos semicondutores, dentre eles o sulfeto de chumbo natural, um mineral conhecido como galena, base do histórico rádio de galena.