14.111 – Exobiologia – Origem da Vida


origem da vida
Os astrônomos que estudam grandes distâncias se deparam com o seguinte problema: mesmo considerando a possibilidade de que o Universo não seja infinito, ele ainda é bastante grande. De modo que há muitas estrelas que ficam mais longe do que a distância que a luz foi capaz de percorrer desde que o Universo nasceu. Essas estrelas são invisíveis. Não só para os seus olhos, mas para qualquer equipamento. Mesmo um telescópio de nitidez infinita seria incapaz de enxergá-las. O nome dessa fronteira entre o visível e o além é horizonte cósmico.
Ainda bem que não faltam coisas para ver dentro do Universo observável: ele contém algo entre 4,2 trilhões e 5,3 trilhões de planetas em zonas habitáveis. Isso dá entre 600 e 700 planetas para cada habitante da Terra. Desses planetas, 300 bilhões (cerca de 5%) estão na órbita de estrelas como o Sol. Um planeta em zona habitável é o que está nem tão próximo de sua estrela que a água evapore, nem tão longe que ela congele.
Isso é porque água líquida é imprescindível para a vida como a conhecemos. A molécula de H2O tem uma extremidade com carga negativa – que atrai moléculas e íons positivos. E outra com carga positiva – que atrai os negativos. Assim, consegue diluir e transportar quase qualquer substância.
A uma distância relativamente curta da Terra – 10 parsecs, ou o que a luz é capaz de percorrer em 33 anos e uns meses – há mais de 160 planetas que podem conter água em estado líquido; destes, nove estão em estrelas similares à nossa. Conclusão? É muito improvável que estejamos sozinhos. Dado que a Terra tem 4,5 bilhões de anos de idade e a vida emergiu assim que houve condições, há cerca de 4 bilhões de anos, é bem mais lógico supor que a origem da vida seja um processo que se repete por aí, várias e várias vezes.
Para encontrar vida – e reconhecê-la como tal –, precisamos saber o que exatamente ela é, e em que condições ela surge. São perguntas difíceis. Para respondê-las, só há um ponto de partida possível: a origem e a definição da vida no nosso planeta, a Terra.
O que é vida?
O fogo é semelhante à vida. Corte seu suprimento de oxigênio e ele cessa. Ele deve ser alimentado, e apaga quando o combustível se esvai. Como um animal faminto, um incêndio florestal se satisfaz ao consumir seres vivos. Nas palavras do biólogo Richard Dawkins, “Como faziam com os lobos, nossos ancestrais podiam capturar um filhote de fogo e domesticá-lo como um útil animal de estimação, alimentá-lo regularmente e limpar suas excreções de cinza”.

Por que, então, sabemos intuitivamente que o fogo não está vivo? Há uma lista de pré-requisitos que define se algo pertence ao mundo inanimado? De certa forma, há. Seres vivos, por exemplo, são capazes de se reproduzir. Em princípio, seria possível encarar uma fagulha como uma semente de fogo, que inicia um novo foco em outro fardo de capim seco. Mas não é suficiente: um ser vivo, quando se reproduz, gera filhotes com as mesmas características que ele. O nome disso é hereditariedade.
O fogo não contém nem transmite informação hereditária. Não há nada que torne um fogo intrinsecamente diferente de outro. Mude a substância química que serve de combustível à chama e ela assume qualquer cor. Um incêndio também cresce indefinidamente quando é estimulado. Já um dálmata não muda de cor quando mudamos seu alimento, nem cresce 50 metros se lhe dermos comida suficiente. Mesmo que lhe cortem a cauda ou lhe pintem de azul, suas crias ainda nascerão com bolinhas pretas e rabo.
Há algo em um cão que o impede de ser algo além de um cão, e este algo é a coleção de genes que está guardada no núcleo de suas células. O genoma. Seres vivos, por definição, transmitem algo à prole. Na origem da vida, portanto, está a hereditariedade. O primeiro gene não precisava respirar ou liberar excrementos de forma reconhecível para nós, usuários de oxigênio e privadas. Na verdade, ele só precisava ser capaz de criar cópias de si mesmo. Cópias que, diferentemente do fogo, fossem elas mesmas em quaisquer circunstâncias.
A hereditariedade é sujeita a falhas – e essa talvez seja sua característica mais importante. O primeiro gene às vezes sofria erros de cópia. Em geral, esses erros eram deletérios para esses filhotinhos de molécula. Mas, volta e meia, um erro, por acaso, conferia uma vantagem reprodutiva, e aumentava a eficiência daquela entidade rudimentar, na fronteira entre a vida e não-vida. Com erros, há variação, e com variação, há seleção natural. Assim, de pouco em pouco, na base da tentativa e erro, a complexidade aumenta. É por isso que a definição de vida oficial da Nasa é “sistema químico autossustentável capaz de passar por seleção darwiniana”.

A vida de Schrödinger
O que, exatamente, a Nasa quer dizer com “sistema químico autossustentável?” O seguinte: um corpo é uma máquina capaz de coletar recursos do ambiente – água, oxigênio etc. – e usá-los para produzir mais de si mesmo. Ele se reconstrói constantemente. Células morrem e são repostas a toque da caixa. Para fazer isso – para se manter vivo –, um corpo precisa combater algo que os físicos chamam de entropia. Entropia é o grau de desorganização de um sistema. Um número que mede a bagunça. A entropia de tudo no Universo tende sempre a aumentar – isso é uma lei, a 2a Lei da Termodinâmica. Um copo cai no chão e a água não volta a seu interior. O ovo se quebra e sua casca não se refaz.

Você, ser humano, é muito organizado. Ou seja: tem entropia baixa. E só está vivo porque consegue evitar que tudo descambe para a bagunça. Sem notar, você mantém uma temperatura de 36,5 °C, controla o nível de açúcar no sangue e a pressão arterial e dilui na medida certa sódio e potássio. Você faz isso negociando entropia com as coisas: um bife entra no seu corpo organizado, com entropia baixa. Sai em forma de um amorfo cocô, com entropia alta. Você pegou os nutrientes dele e transformou em mais de você. Assim, sua entropia é mantida sob controle. A essa luta contra entropia damos o nome de vida.

Quem rege o combate à entropia, no seu corpo, é algo chamado informação. Do tipo que se mede em megabytes, mesmo. Se o seu corpo fosse um arquivo de computador, seria um arquivo grande, pois coisas muito organizadas exigem muitos megabytes. Os seus megabytes estão armazenados em um HD que se preserva de geração em geração: o DNA. É o DNA que orquestra os processos metabólicos que te mantêm vivo. E, depois que você se reproduz e morre, ele, que é imortal, fica de herança para os seus filhos.
Em 1943, quando as propriedades do DNA ainda não eram conhecidas, o físico Erwin Schrödinger – o do gato de Schrödinger – deu uma série de palestras para leigos no Trinity College, em Dublin, em que especulava sobre vida, entropia e informação – e propunha que precisava haver uma molécula capaz de armazenar dados.
Em 1944, um ano depois, Oswald Avery descobriu que essa molécula era o DNA. E, em 1953, Francis Crick e James Watson decifraram a intrincada forma como ele guarda o manual de instruções do seu corpo – em uma parceria conturbada com Rosalind Franklin e Maurice Wilkins. Começava uma revolução na biologia, em que se descobriu que todos os seres vivos compartilham um maquinário microscópico único, com três moléculas mutuamente dependentes: o DNA, o RNA e as proteínas. Hora de conhecê-las – e entender como elas elucidam a origem da vida.

Três suspeitos de um crime: DNA, RNA e proteínas
Por um lado, a origem da vida está em uma molécula replicadora, capaz de armazenar e transmitir informação hereditária. Por outro lado, sabemos quais são as moléculas mais importantes em qualquer ser vivo: DNA, RNA e proteínas. Este é, portanto, um mistério de detetive. É preciso analisar as capacidades, funções e defeitos das três num ser vivo contemporâneo para entender qual delas é a suspeita mais provável de ser a replicadora original. Um “crime” longínquo, que ocorreu há não mais que 4,2 bilhões de anos.

Vamos dar uma de Agatha Christie. Começando com as proteínas, os burros de carga da vida. Seus músculos são feitos de proteínas (actina e miosina). Suas unhas (queratina) também. São proteínas que digerem os carboidratos que você come (amilase) no momento em que eles tocam a saliva. Na verdade, a função do DNA é armazenar instruções para a fabricação das nossas 92 mil proteínas. Só isso. Uma vez fabricadas, elas cuidam do resto. A favor das proteínas, portanto, temos que elas fazem tudo.
E contra? Bem, proteínas são cadeias de componentes químicos menores chamados aminoácidos. Os aminoácidos têm nomes que soam como uma reunião de idosas psicodélicas: lisina, alanina, leucina… São 20, ao todo. A ordem em que eles são enfileirados é essencial. Precisa ser perfeita. Um único aminoácido fora do lugar e você terá uma proteína inútil em mãos. É que proteínas se dobram, como novelos de lã embaraçados, e é a dobra que define a função. O colágeno, por exemplo, contém 1.055 aminoácidos, dobrados com precisão de origami.
A origem da vida requer que uma molécula razoavelmente funcional surja de condições simples. E esperar uma proteína brotar do nada é como escrever Dom Casmurro dando com a testa no teclado. Esquece. É o tipo de milagre que não acontece. Se você tivesse jogado na loteria todo ano, da formação da Terra até hoje, já teria dado para ganhar 77 vezes – é uma obrigação estatística. Não teria dado tempo, porém, de formar algo como o colágeno. A chance de uma proteína como o colágeno se formar espontaneamente em uma piscina de aminoácidos é de uma em 20 seguido de 1.055 zeros.
“Legal”, você dirá, “é óbvio que nenhuma obra começa com os tijolos se empilhando sozinhos. Ela começa com o arquiteto. A primeira molécula, então, foi o DNA”. Para avaliar o palpite, é essencial entender como, exatamente, uma molécula de DNA é capaz de dar instruções.
Imagine o DNA como um colar de miçangas químico. Há uma miçanga chamada adenina (A). Outra chamada guanina (G). Ao todo, são quatro miçangas: A, T, C e G. Elas se chamam nucleotídeos, e ficam penduradas numa espécie de cordão, assim: ATGGCTCTAGG… A parte mágica é que cada aminoácido tem um encaixe químico perfeito com um grupo de três letrinhas do DNA. A lisina, por exemplo, só adere às sequências AAA e AAG. Já a leucina gosta de CTA ou CTG. E assim, de três em três letras, o DNA anota a receita das proteínas.
O problema é que o DNA só serve para anotar as receitas, mesmo. Ele é incapaz de executá-las. Há aqui um problema de ovo e galinha: o DNA é o manual para produzir proteínas, mas não consegue, de fato, produzi- -las. As proteínas, por sua vez, são complexas demais para terem simplesmente surgido – e não têm uma estrutura boa para armazenar informação.
Hora de ir para o terceiro suspeito, o RNA. Dá para imaginar cada célula viva (você é composto de 37,2 trilhões delas) como uma minúscula cidade, em que os executivos ficam no centro, e os operários, na zona industrial. Por isso, há um grupo de moléculas especializado em ligar os bairros: ir até o DNA, coletar as receitas de proteínas e levá-las para a fábrica. Depois, no interior dessas fábricas (chamadas ribossomos), são essas mesmas moléculas que montam as proteínas, tijolo por tijolo.

O nome dessas moléculas de função logística é RNA. Para “ler” o código do DNA, elas precisam ser estruturadas como ele: uma sequência de miçangas químicas. Há só uma letrinha diferente: A, U, C e G (a letra U equivale ao T). Por outro lado, o RNA consegue se dobrar sobre si próprio em formas complexas e catalisar reações químicas, exatamente como as proteínas. Bingo. É o meio-termo que a vida precisa para surgir. Cérebro e músculo em um lugar só.
O mundo RNA
Em 2003, em um instituto de bioquímica chamado Scripps, na Califórnia, Gerald Joyce e Tracey Lincoln criaram uma molécula de RNA chamada R3C. O código dela é tão simples que cabe aqui: NNNNNNUGCUCGAUUGGUAACAGUUUGAAUGGGUUGAAGUAU – GAGACCGNNNNNN (a letra N aparece quando o nucleotídeo que ocupa uma determinada posição é indiferente).

Antes de entender por que R3C é importante, algo precisa ser dito sobre as letrinhas de RNA: elas formam pares. O nucleotídeo G só gruda em C, o nucleotídeo A só gruda em U. Essas duplas se atraem feito ímãs de polaridades opostas. Assim, quando você sacode um tubo de ensaio de R3C, algumas das suas letrinhas se encaixam, ele se dobra e fica com a forma de um grampo de cabelo.

O resultado é uma habilidade peculiar: R3C começa a catalisar uma reação química cujo resultado é mais dele mesmo. Ele vira uma máquina de xerox que só faz mais R3C. Isso o torna um exemplo perfeito de molécula inanimada que faz uma malandragem de coisa viva: se reproduzir. Ele pode não ser a origem da vida na Terra, mas tem currículo para assumir o cargo.
O mundo RNA: como uma molécula inanimada pode se reproduzir, ainda que de maneira rudimentar. É impossível recriar a exata sequência de passou que levou à origem da vida, pois este é um fato histórico. Mas é possível imaginar – e depois criar em laboratório – cenários bastante plausíveis.
O mundo RNA: como uma molécula inanimada pode se reproduzir, ainda que de maneira rudimentar. É impossível recriar a exata sequência de passou que levou à origem da vida, pois este é um fato histórico. Mas é possível imaginar – e depois criar em laboratório – cenários bastante plausíveis.
Outros RNAs, com outras dobras, exercem outras funções. Juntam aminoácidos, produzem membranas… E aí a união faz a força. “Se você dá tempo ao tempo, moléculas começam a se juntar ao acaso; depois, se juntam porque outras moléculas ajudaram. Assim, elas ganham mais habilidades. Elas estavam submetidas à seleção natural”, explica Carlos Menck, geneticista da USP.
É por causa do sucesso de experimentos como esse que hoje o pioneirismo do RNA é praticamente consenso entre cientistas. Se os primeiros seres vivos não foram moléculas de RNA, é difícil imaginar o que eles possam ter sido. Essa hipótese – de que a vida na Terra é resultado de uma criativa start-up de RNAs fundada há 4,2 bilhões de anos – tem o nome de “mundo RNA”.

RNA: origens
Então dá para fazer vida a partir de RNA. Mas como fazer RNA? O fato mais notável sobre os ingredientes do seu corpo é que eles não têm absolutamente nada de notável. Pegue, por exemplo, o cianeto de hidrogênio (HCN). Ele se forma aos montes na poeira interestelar. É tóxico para qualquer forma de vida que respira oxigênio. Foi usado extensivamente como arma química na 1a Guerra Mundial. Mesmo assim, junte cinco moléculas de HCN e você consegue uma molécula de H5C5N5 – vulgo adenina, peça central do DNA, do RNA e do ATP (tão importante para você quanto uma bateria de lítio é para um celular). Em outras palavras, seu código genético e seu metabolismo dependem de um hardware cujas peças, encaixadas de outra forma, são um meio eficiente de te matar.

Em 1953, Stanley Miller, pós-graduando da Universidade de Chicago, tentou, pela primeira vez, gerar algo vivo a partir de ingredientes inanimados. Ele sabia que a atmosfera da Terra primitiva continha substâncias extremamente comuns no cosmos, como hidrogênio, metano (CH4) e amônia (NH3). Miller passou vapor de água por essas substâncias e adicionou energia elétrica – simulando uma chuva pré-histórica e a radiação ultravioleta do Sol. Assim, esses compostos básicos se juntaram para formar aminoácidos, que formam as proteínas.

Hoje, há muitos Millers por aí. Eles já sabem que proteínas não são o caminho, então tentam criar RNA. Em 2009, uma equipe da Universidade de Cambridge encontrou um caminho convincente para fabricar citosina (C ) e uracila (U). Mais recentemente, em 2016, Thomas Carell, da Universidade Ludwig Maximilian, chegou a uma receita igualmente plausível para a adenina (A) e a guanina (G). Neste ano, Carell juntou os dois processos em um: com oxigênio, nitrogênio, metano, amônia, água e cianeto de hidrogênio (nosso amigo HCN), fez os quatro nucleotídeos aparecerem na mesma mistura.

Ou seja: o que define a vida não são os tijolos que ela usa (eles são banais), mas a maneira como eles se encaixam e interagem. Assim, um bom ponto de partida para encontrar vida fora da Terra é ir atrás de lugares em que os tijolos são abundantes.

Luas e micróbios
Titã, a maior das 62 luas de Saturno, é uma espécie de gêmea má (e menor) da Terra. Imagine o seguinte: na superfície, onde a temperatura média é de 179,5°C negativos, há cordilheiras, ilhas, planaltos e planícies como as nossas. Que, em vez de rocha, são feitos de gelo. Até a areia é granizo. Para completar a paisagem exótica, o metano, que conhecemos como um gás, fica em estado líquido no frio de Titã. Há rios, lagos, nuvens e chuva de metano. Um ciclo hidrológico completo.

Por causa disso, Titã é um teste para a onipresença da vida no Universo. Se alguma molécula de função análoga ao RNA se formasse usando metano como solvente, em vez de água, seria a prova de que há mais de um jeito de criar, nas palavras da Nasa, “sistemas químicos autossustentáveis”. Outras químicas exóticas – como moléculas baseadas em silício, em vez de carbono, em uma solução de nitrogênio líquido – também já foram consideradas para astros extremamente frios.
1.
A atmosfera é espessa, opaca e repleta de nitrogênio. Vista de longe, a Lua aparenta ser uma enorme almofada lisa, sem nada de interessante.

2.
Debaixo da espessa atmosfera, há um relevo rico e variado como o da Terra – mas feito de gelo, em vez de rocha. A sonda Huygens pousou lá em 2005.

3.
Montanhas e vales de gelo abrigam um “ciclo do metano”: lagos, rios, nuvens e chuvas da substância. Embora as chances sejam baixas, eles poderiam, pelo menos em teoria, sustentar alguma forma de vida exótica (com moléculas baseadas em silício em vez de carbono, por exemplo).

4.
Entre as duas camadas de gelo, há um oceano oculto. Como não há uma superfície mineral aquecida em contato com a água (caso da lua Europa, que você vê mais abaixo), a vida torna-se uma possibilidade remota no subterrâneo.

5.
O núcleo rochoso é revestido por uma camada de gelo sob pressão.

Já Europa, lua de Júpiter, está mais próxima de um oásis de vida como a conhecemos. Debaixo da crosta de gelo de 15 km que envolve o planeta, há um oceano de 100 km de profundidade – nove vezes mais fundo que o local mais fundo da Terra, a Fossa das Marianas, no leito do Pacífico. O fundo desse oceano oculto entra em contato direto com o núcleo rochoso. O calor é fornecido por algo chamado força de maré: a maneira como a gravidade deJúpiter puxa e repuxa a lua em sua órbita. Com o calor, a água se aquece. Muito. Às vezes, um jato d’água perfura a camada de gelo e emerge na superfície. É expelido no espaço aberto como um vulcão.
Em 2012, o telescópio Hubble fotografou uma dessas erupções: ela tinha 20 vezes a altura do Everest. Dado o que já sabemos da Terra, uma fonte de calor, uma superfície mineral e uma coleção de moléculas orgânicas são uma combinação propícia à vida.

1.
Em 2023, a sonda Europa Clipper tentará coletar amostras d’água ao longo de 45 rasantes.

2.
A água aquecida fura o gelo e é expelida na forma de imensos geysers.
3.
Manchas cor de ferrugem na superfície podem conter sais minerais – e material orgânico que foi exposto à radiação de Júpiter.
4.
O interior rochoso, aquecido pela força de maré gerada de Júpiter, contém fontes hidrotermais. Ambiente ideal para a vida.
5.
A camada de gelo de 15 km talvez seja dividida em placas tectônicas como as da Terra.
O que espera-se encontrar em lugares como Titã e Europa? Com muita sorte, micróbios. Nas palavras de Edward O. Wilson, de Harvard, “qualquer que seja a condição da vida alienígena, quer ela floresça na terra firme e no mar, quer ela apareça apenas em pequenos oásis, ela consistirá majoritária ou inteiramente em micróbios”. Wilson se baseia, é claro, no fato de que a vida na Terra consiste majoritariamente em micróbios. O planeta é deles. Cada centímetro cúbico de esponja de pia suja contém 54 bilhões de bactérias de 362 espécies. As que não gostam de pia podem viver em lagos de soda cáustica, na água fervente de chaminés submarinas e até no caldo ácido de rejeitos de mineração.
Por 3,5 bilhões de anos, toda a vida na Terra foi unicelular, e não há um ambiente a que bactérias não se adaptem. Um dos pilares do estudo da vida alienígena são justamente esses bichinhos sem frescura – que, de semelhantes a nós, não têm muito mais que o DNA. Eles mostram o caminho para sobreviver em praticamente qualquer situação. Se uma sonda enviada a Europa – caso da Europa Clipper, planejada pela Agência Espacial Europeia (ESA) para 2023 – analisasse amostras de material orgânico ejetadas pelos vulcões d’água, teríamos uma oportunidade única de detectar indícios de vida microscópica.

Os exoplanetas
Luas são uma coisa. Mas e os planetas de outras estrelas – os exoplanetas? Bem: coletar material de análise in loco ainda é uma meta utópica. Não há uma tecnologia de propulsão que dê conta sequer de alcançar Proxima Centauri – a estrela mais próxima do Sol, que abriga um planeta com potencial para ter água líquida. Também não há nada que nos permita observar diretamente um exoplaneta: eles não emitem luz própria, e a quantidade de luz refletida não é suficiente para alcançar nossos olhos.
Na verdade, telescópios caçadores como o recém-aposentado Kepler usam truques bem mais sutis para detectar exoplanetas. Da sombra que o planeta faz quando passa na frente de sua estrela, é possível deduzir seu tamanho. Da maneira como a estrela oscila, sai a massa – pois estrelas “dançam” um pouquinho em resposta à gravidade de seus planetas. Tendo em mãos tamanho e massa, calcula-se a densidade – que diz, por exemplo, se o planeta é sólido ou gasoso. Por último, caso o planeta tenha atmosfera (como o nosso), a luz da estrela que atravessa a atmosfera antes de nos alcançar carrega consigo informações sobre o coquetel de gases que a compõem.
A imagem acima ilustra a queda sutil na luminosidade de uma estrela (2) quando um planeta passa em sua frente – em comparação à luminosidade quando o planeta está ao lado ou atrás dela (1 e 3). É por meio desta técnica, chamada “método de trânsito”, que telescópios como aposentado Kepler detectam exoplanetas.
A imagem acima ilustra a queda sutil na luminosidade de uma estrela (2) quando um planeta passa em sua frente – em comparação à luminosidade quando o planeta está ao lado ou atrás dela (1 e 3). É por meio desta técnica, chamada “método de trânsito”, que telescópios como aposentado Kepler detectam exoplanetas.
Esse coquetel, por si só, é uma pista. Por exemplo: a Terra, no início, praticamente não tinha oxigênio na atmosfera. O gás só passou a predominar graças à invenção da fotossíntese (feita inicialmente por cianobactérias; hoje, também pelas plantas). Atmosferas com anomalias desse tipo podem ser indício de ambientes fora de equilíbrio, alterados por seres vivos.
“Oxigênio e metano juntos na atmosfera de um planeta são bons indicadores de um processo biológico”, diz Abel Méndez, diretor do Laboratório de Habitabilidade Planetária da Universidade de Porto Rico, em Arecibo. “Qualquer um dos dois poderia ser produzido sozinho por um processo não biológico, mas se são produzidos juntos, um reage com o outro e ambos somem. Precisa haver um processo biológico fazendo a reposição constantemente.”
As muitas Terras que há no céu
No gráfico, conheça alguns exoplanetas – isto é, planetas de outras estrelas – com potencial para abrigar vida
1.
Para abrigar vida dependente de água líquida, como a nossa, um exoplaneta não pode ficar nem tão longe de sua estrela que ela congele, nem tão perto que ela evapore. O nome dessa região é zona habitável. No gráfico, a zona habitável é a área laranja listrada.
2.
Estrelas são classificadas por temperatura. Cada faixa de temperatura é chamada por uma letra, e tem cor e tamanho característicos – veja o gráfico. Quanto mais quente é uma estrela, mais longe fica a sua zona habitável.

3.
Para ler o gráfico, é preciso saber que a distância entre um planeta e sua estrela é medida em UAs – a distância entre o Sol e a Terra (149 milhões de km). Planetas de estrelas frias precisam ficar bem mais perto delas para receber o mesmo calor que a Terra.

Proxima B
Distância da estrela: 0,05 UA
Tamanho: não pôde ser calculado, mas deve ter aproximadamente o mesmo tamanho que a Terra
Duração do ano: 11,2 dias
Distância de nós: 4,2 anos-luz

É o mais próximo de nós, e também um dos mais similares à Terra. Talvez sofra do mesmo fenômeno que a Lua: o acoplamento de maré, em que há um lado claro, constantemente virado para a estrela, e um lado escuro, extremamente frio. Ou seja: um lado em que sempre é dia, e outro que é sempre noite. Nesse caso, a vida só seria possível na faixa intermediária, de temperatura mais amena.

Kepler-442B
Distância da estrela: 0,4 UA
Tamanho: 60% da Terra
Duração do ano: 112 dias
Distância de nós: 1206 anos-luz

Recebe 70% da luz da Terra e tem uma gravidade uns 30% maior. Ou seja: é friozinho e pesado.

Sistema Trappist-1
Distância da estrela: entre 0,029 UA e 0,037 UA
Tamanho: igual à Terra
Duração do ano: entre 2 e 6 dias
Distância de nós: 39,6 anos-luz

Não é um planeta: são oito, parecidos com a Terra em tamanho e composição química e apertadinhos a uma distância bem pequena de sua estrela (que é do tipo M, bem menor e mais fria que o Sol). Quatro deles, D, E, F e G, podem ser habitáveis.

Kepler-186f
Distância da estrela: 0,43 UA
Tamanho: 17% maior que a Terra
Duração do ano: 129 dias
Distância de nós: 582 anos-luz

Foi o primeiro exoplaneta parecido com a Terra encontrado pelo Kepler, em 2014. Continua promisor, apesar da distância.

Kepler-452b
Distância da estrela: 1 UA
Tamanho: 50% maior que a Terra
Duração do ano: 384 dias
Distância de nós: 1.830 anos-luz

Ele é quase igual à Terra, e orbita uma estrela quase igual ao Sol. Até seu ano tem duração parecida com o nosso.

A equação de Drake
A equação abaixo foi rabiscada pelo astrônomo Frank Drake em 1961 (reza a lenda, num boteco), e depois apresentada em uma reunião com 11 cientistas interessados no tema da vida extraterrestre inteligente. Ela serve para calcular quantas civilizações inteligentes há na Via Láctea – o valor N.

A equação de Drake
“N”, o resultado, é o número de civilizações inteligentes na Via Láctea. Para calculá-lo, multiplique os números abaixo:
“R*” é a taxa anual de produção de estrelas na Via Láctea.
São 7 por ano, segundo um estudo de 2006.

“fp” é fração de estrelas que têm planetas.
Este número é comprovadamente próximo de 100%: quase toda estrela tem um planeta. Portanto, fp = 1.

“ne” é fração de estrelas com planetas habitáveis.
A estimativa mais recente é 40%. Logo, ne = 0,4.

“fl” é a fração de planetas habitáveis com vida.
A reunião de 1961 estimou que, onde quer que a vida possa surgir, ela vai surgir: 100% Portanto, 1.

“fi” é a fração de planetas com vida inteligente.
Vida inteligente é um negócio raro. Vamos supor que só surja em 0,1% dos casos – uma previsão ligeiramente otimista. O biólogo evolutivo Ernst Mayr lembra que já existiram 50 bilhões de espécies na Terra, e só uma (nós) é inteligente.

“fc” é a fração de planetas com vida inteligente que alcançam o estágio tecnológico necessário para se comunicar com ondas eletromagnéticas.
O chute do Drake foi 20%. Mas aqui já estamos entrando no território da ficção científica.

“L” é o tempo de vida de uma civilização capaz de se comunicar por ondas de rádio.
Pura especulação. Vale qualquer número.

A solução da SUPER deu 56. Ou seja: temos companhia! Mas vale uma advertência: a equação de Drake não é feita para ser resolvida, e sim contemplada. Coloque os valores que quiser. E divirta-se!
É difícil, claro, cravar um valor preciso para essas variáveis. Conforme o otimismo de quem atribui os números, dá para concluir que há 20 ou 50 milhões de civilizações compartilhando a galáxia conosco.
Um pessimista diria que a vida inteligente, na verdade, é algo estúpida. E, por isso, rara. Faz pouco mais de um século que aprendemos a nos comunicar por longas distâncias via rádio; mesmo assim, estamos à beira da autodestruição: bombas nucleares, aquecimento global, ecossistemas desequilibrados… Se todas as civilizações forem tão danosas para si próprias quanto a nossa, elas podem ser como bolhas que emergem e desaparecem por aí constantemente, sem nunca alcançar um estágio tecnológico realmente avançado. Essa seria a explicação para o silêncio aterrador do cosmos.
Um otimista em excesso, por outro lado, talvez não ficasse tão feliz assim em encontrar ETs mais inteligentes que nós. Na biologia, há um conceito chamado fenótipo estendido. Ele consiste no raciocínio de que não há diferença entre a concha produzida pelo corpo de um caracol e o dique que um castor constrói entrelaçando madeira: ambos são manifestações visíveis de um instinto, gravado nos genes.
Uma cidade iluminada à noite não é bem um exemplo de fenótipo estendido: nossa inteligência e cultura atingiram um estágio tal que erguer construções não é mais uma mera resposta automática ao instinto de se abrigar. Resta saber se um ET inteligente entenderia isso – ou veria Londres ou Rio de Janeiro como meros formigueiros. Arthur Clark resumiu: “Só existem duas possibilidades: ou estamos sozinhos no Universo ou não estamos. Ambas são igualmente assustadoras”.

13.663 – Mega Hipóteses Astronômicas – Superterras podem estar prendendo ETs de explorar universo


superterras
Por exemplo, para lançar uma missão lunar parecida com a missão Apollo, um foguete em uma superterra teria que ser uma massa de cerca de 400.000 toneladas devido às exigências de combustível, estipula o estudo, o que é dez vezes mais do que é exigível na Terra. Para comparar, esse peso é mais ou menos equivalente ao da Grande Pirâmide de Gizé no Egito, informa o portal Space.com.
O autor do relatório e investigador independente afiliado ao observatório alemão Sonnesberg, Michael Hippke, ressalta que nos planetas mais maciços o voo espacial seria exponencialmente mais caro. “Tais civilizações não teriam televisão de satélite, uma missão lunar ou um telescópio Hubble.”
Pesquisas anteriores sugeriam não só que os mundos que não são parecidos com a Terra poderiam criar circunstâncias adequadas para a vida, mas também que alguns poderiam ser até melhores em comparação com os planetas parecidos com a Terra. As superterras, segundo os especialistas, poderiam ser “super-habitáveis”, já que a sua massa enorme cria uma gravidade mais forte e por isso eles poderiam ter camadas de atmosfera mais espessas e proteger melhor a vida dos nocivos raios cósmicos.

Se a vida nas superterras distantes evoluísse, tais alienígenas poderiam desenvolver uma civilização avançada capaz de efetuar voos espaciais. Entretanto, Hippke ressalta que a força gravitacional destes planetas poderia dificultar muito a decolagem dos extraterrestres dos seus planetas.
“Civilizações das superterras têm menos chances de explorar as estrelas. Ao contrário, de certo modo ficariam presos em seus planetas de origem e, por exemplo, beneficiariam mais do uso de lasers ou telescópios de rádio para comunicação interstelar em vez de enviar sondas ou naves espaciais”, sublinha o autor do estudo.
Para ele, os foguetes funcionam melhor no vácuo que em uma atmosfera e os habitantes de superterras poderiam atingir a órbita via foguetes convencionais usando elevadores espaciais viajando com cabos gigantes. Outra possibilidade, conforme Michael Hippke, é a propulsão por pulsos nucleares, quer dizer, um veículo seja levado ao espaço por explosões de bombas atômicas. Mesmo assim, o especialista adverte que este modo poderia levar a grande poluição ambiental.

13.653 – Agência espacial russa descobre formas de vida na superfície da ISS


iss2
Testes realizados na superfície da Estação Espacial Internacional (ISS) já sugeriam que micrometeoritos e poeira de cometas que recaem sobre a órbita terrestre baixa poderiam conter formas de vida alienígenas ou extraterrestres. Agora, após pesquisas com amostras de poeira coletadas na ISS, cientistas russos informaram à agência de notícias Tass seu avanço nos estudos. De acordo com a agência espacial russa Roscosmos, há motivos para acreditar que pode haver formas de vida microbianas e de origem inteiramente extraterrestre na superfície da ISS.
“Os micrometeoritos e as poeiras das cometas que se fixam à superfície ISS podem conter substância biogênica de origem extraterrestre em sua forma natural”, afirmou a Roscosmos em comunicado divulgado na sexta-feira, segundo a Tass.
Entenda o caso
Astronautas russos coletaram 19 amostras de poeira da área em questão durante expedições espaciais conduzidas desde 2010, como parte de uma série de experimentos denominados “Test”. Experimentos laboratoriais anteriores, realizados com as amostras, trouxeram a suspeita de que o pó contido na superfície da ISS poderia conter “biomateriais” de origem extraterrestre ou alienígena.
No entanto, de acordo com informações da Newsweek, os analistas teriam que realizar testes mais exaustivos e precisos antes de poder confirmar que as suspeitas de “substâncias biogênicas” referem-se de fato a micróbios de origem extraterrestre. Mesmo assim, os russos expressaram a convicção de que uma análise mais cuidadosa poderá trazer resultados mais definitivos, porque “os especialistas descobriram que a ISS gasta 60% do seu tempo em voos por dentro dos fluxos de substâncias dos cometas”, informou a Tass.
Como prioridade, os pesquisadores teriam que determinar, conclusivamente, se as supostas “substâncias biogênicas” são de origem alienígena ou nativas da própria Terra.

Estudos anteriores
No início de 2014, cientistas da Rocosmos anunciaram a descoberta de vestígios de formas de vida simples, como plânctons microbianos, algas e “DNA bacteriano” em amostras de poeira coletadas na superfície da ISS. Vladimir Soloyev, líder da missão orbital russa na ISS, confirmou, na época, que cientistas haviam encontrado formas microbianas vivas, incluindo o plâncton, em material coletado na superfície externa das janelas da ISS.
“Os resultados da experiência são absolutamente singulares. Encontramos vestígios de plâncton marinho e de partículas microscópicas na superfície do iluminador. Isso deve ser estudado mais a fundo”, disse Soloyev à Tass, segundo informações da Newsweek.
Na ocasião, a equipe de pesquisadores russos informou que os plânctons não poderiam ser levados ao espaço pela própria nave espacial porque não faziam parte da vegetação típica de Baikonur, no Cazaquistão, de onde os russos lançaram seu módulo rumo à ISS.
Porém, os russos sugeriram que os plânctons poderiam ter “se erguido” rumo ao laboratório em órbita a partir de outras regiões da Terra, através de correntes de ar de altitudes mais elevadas. Embora os pesquisadores russos tenham pensado que o organismo não se tratava de micróbios alienígenas, eles constataram que a descoberta forneceu evidências de que formas de vida microbianas poderiam sobreviver no vácuo espacial, mesmo sob temperaturas abaixo de zero e com o bombardeio constante de radiação cósmica. De acordo com os cientistas da Roscosmos, a descoberta sugere que micrometeoritos e poeiras estelares poderiam conter micróbios alienígenas, ou seja, formas de vida microscópica que se desenvolveram integralmente no espaço ou que se originaram em outro planeta.
Polêmicas e divergências
As pistas estimularam os russos a focar o interesse na busca por micróbios alienígenas em amostras de poeira coletadas na superfície da ISS. O porta-voz da Nasa, Dan Duot, confirmou na época que os russos não estavam, originalmente, procurando por micróbios alienígenas quando começaram a coletar amostras na superfície externa das janelas do segmento russo da ISS.
“O que eles procuravam de fato eram resíduos que podem se acumular em elementos visualmente delicados, como janelas, assim como no casco da nave em si que irá se acumular sempre que forem feitos disparos de fogo para garantir a impulsão”, disse Huot à Space.com. “Foi com esse objetivo que eles coletavam amostras”.
Ao mesmo tempo, Huot e outros funcionários da Nasa expressaram seu ceticismo sobre a afirmação dos russos, quando estes indicaram a descoberta de microorganismos vivos na ISS.
“Até onde sabemos, não ouvimos falar de nenhum relatório oficial dos nossos colegas da Roscosmos informando que encontraram plânctons marinhos”, disse Huot em resposta a uma entrevista da Space.com.
No entanto, o Centro Aeroespacial Alemão (DLR) confirmou, mais tarde, estar ciente de que os pesquisadores russos encontraram o “DNA bacteriano” na superfície da ISS. Mas também informou que não poderia confirmar os detalhes da afirmação, nem se responsabilizar pela metodologia adotada no estudo.
“O método por meio do qual as amostras foram analisadas, nesse caso, é questionável, pois não pode detectar todos os tipos de bactéria nem testar se elas estão vivas e se reproduzindo, ou não”, disse a porta-voz do DLR, Alisa Wilken.

Sequência das pesquisas
Embora a Roscosmos não tenha contestado a declaração do DLR, fica evidente a partir da última série de testes que os especialistas russos haviam suspeitado da existência de organismos alienígenas microscópicos ou “DNA” extraterrestre nas amostra de poeira. Os testes atuais estão, portanto, projetados para confirmar ou refutar suspeitas de que o material coletado contém vida extraterrestre.
Enquanto isso, o astrobiólogo britânico e professor Chandra Wickramasinghe, da Universidade de Buckingham, saudou o estudo russo como, potencialmente, o “desenvolvimento mais significativo do século”, que poderia revolucionar a nossa compreensão sobre a vida na Terra e no espaço.
“Estamos mais perto do que nunca de reconhecer que as formas de vida extraterrestre de fato existem. É uma evolução impressionante”, acrescentou, conforme informações da Express. “Durante anos, as pessoas tentaram desmascarar teorias sobre a vida em outros planetas, mas muito em breve isso simplesmente não será mais possível”.
O professor Milton Wainwright, da Universidade de Sheffield e do Centro de Astrobiologia da Universidade de Buckingham, afirmou em uma série de estudos preliminares que havia encontrado partículas semelhantes a algas, de origem extraterrestre, na estratosfera da Terra. Ele também parabenizou as pesquisas russas.
“Estes relatórios em que os cientistas afirmam ter encontrado vida em poeira cósmica é surpreendente”, afirmou. “Formulados a partir de estudos da agência espacial russa, a Roscosmos, são capazes de dar um impulso real ao que dizemos há muitos anos: existe vida fora da Terra”, concluiu. [Inquisitr]

13.568 – Exobiologia – Estas estranhas bactérias podem ser a chave para a encontrarmos


bacterias-comem-ar-antartica
Formas de vida

Os micróbios foram encontrados na Antártica e podem subsistir de uma dieta de hidrogênio, monóxido de carbono e dióxido de carbono, mantendo-se vivos nas condições mais extremas em que outros alimentos e fontes de energia são escassos.
A possibilidade de formas de vida de baixo nível existirem em outros planetas também é uma que agora podemos considerar.
“A grande questão é como os micróbios podem sobreviver quando há pouca água, os solos são muito baixos em carbono orgânico e há pouca capacidade para produzir energia do sol através da fotossíntese durante a escuridão do inverno”, disse a principal pesquisadora Belinda Ferrari.

Vida que vive do quê?
A Antártica é um local com condições particularmente desfavoráveis à vida: temperaturas extremas, pouca água, meses de escuridão, radiação ultravioleta forte e intempérie de ciclos de congelamento e descongelamento.
E, no entanto, a vida está presente lá. Como sobrevive sem as fontes de energia usuais, como carbono que se transforma em açúcar através da fotossíntese?
Para responder a essa pergunta, os pesquisadores coletaram amostras de solo de duas partes livres de gelo do continente, Robinson Ridge e Adams Flat, escolhidas porque qualquer fonte de alimento reconhecível para a vida ou para bactérias é praticamente inexistente por lá.
Ao reconstruir os genomas de 23 micróbios, os cientistas conseguiram identificar dois grupos de bactérias anteriormente desconhecidos que eles chamaram de WPS-2 e AD3.
Além disso, as espécies dominantes no solo tinham genes com alta afinidade com o hidrogênio e o monóxido de carbono, permitindo que capturassem estes gases do ar a uma velocidade suficientemente rápida para sustentar a vida.

Vida alienígena
Essa é a primeira forma de vida que “come ar” que já identificados, mesmo que seja apenas uma bactéria na maior parte dormente.
O próximo passo é descobrir quão generalizados são estes tipos de bactérias de baixa manutenção, seja na Antártica ou em qualquer outro lugar da Terra.
Eventualmente, micróbios semelhantes podem ser encontrados em outros planetas, ou seja, formas de vida sem necessidade de outros alimentos exceto o ar que respiram.
“Esta nova compreensão sobre como a vida ainda pode existir em ambientes fisicamente extremos e desprovidos de nutrientes como a Antártica abre a possibilidade para gases atmosféricos que sustentam a vida em outros planetas”, explica Ferrari. [ScienceAlert]

13.341 – Astrobiologia – Por que a vida em Marte pode ser impossível?


Marte 2
A probabilidade de que os astrônomos encontrem vida em Marte pode ter caído consideravelmente com a descoberta de que o planeta é coberto de tóxicos capazes de destruir qualquer organismo vivo. Segundo estudo publicado no periódico Scientific Reports, nesta quinta-feira, a combinação entre as substâncias químicas do solo marciano e a forte radiação ultravioleta que bombardeia a atmosfera seria fatal para microrganismos como as bactérias – ou seja, qualquer vida surgida no passado seria eliminada pelas condições atuais de Marte.
A descoberta, de acordo com os cientistas, deve ser considerada por futuras missões para a busca de vida no planeta, pois apenas organismos enterrados dois ou três metros sob a superfície estariam a salvo da radiação.
O estudo, feito por uma dupla de astrobiólogos da Universidade de Edinburgo, na Escócia, foi baseado na descoberta de percloratos, substâncias com alto conteúdo oxidantes, em solo marciano. Missões como a Viking, da Nasa, que pesquisou o planeta nos anos 1970, já havia encontrado indícios da substância, que teve a existência confirmada pela sonda Phoenix, em 2008, e pelas missões Curiosity e Mars Reconnaissance Orbiter (MRO). Até agora os cientistas acreditavam que, apesar de o químico ser altamente tóxico para microrganismos, eventuais bactérias marcianas poderiam ter encontrado uma maneira de utilizá-lo como fonte de energia.
Para verificar essa possibilidade, Jennifer Wadsworth e Charles Cockell resolveram simular o ambiente marciano em laboratório e submeter a ele bactérias Bacillus subtilis, que são encontradas no solo terrestre e costumam contaminar sondas espaciais. Inicialmente, as bactérias foram expostas a perclorato de magnésio e bombardeadas com radiação ultravioleta em níveis semelhantes aos de Marte. Os pesquisadores perceberam que, com a presença do químico, os microrganismos morriam duas vezes mais rapidamente.
Em uma segunda leva de testes, peróxidos e óxidos de ferro, que também são encontrados no solo marciano, foram adicionados à combinação. Com as novas substâncias, as bactérias desapareciam onze vezes mais rapidamente do que no ambiente compostos apenas de percloratos e radiação.
“Apesar de suspeitarmos dos efeitos tóxicos de oxidantes na superfície marciana há algum tempo, nossas observações mostram que o solo atual de Marte é altamente deletério para as células, resultado de um coquetel tóxico de oxidantes, óxidos de ferro, percloratos e radiação UV”, afirmam os pesquisadores no estudo.

Há vida em Marte?
O novo estudo, porém, não elimina a possibilidade de vida em Marte, segundo os cientistas. Isso porque ela pode ser encontrada no subsolo – onde estaria protegida das fortes radiações – ou mesmo se aproveitar das baixas temperaturas para se proteger. Quando Wadsworth e Cockell ajustaram a temperatura do experimento de 25°C para 4°C, a morte das bactérias foi sensivelmente reduzida, o que sugere que, em temperaturas amenas, talvez os microrganismos estariam a salvo. Em Marte, a média de temperatura fica em torno de -55°C. Além disso, as concentrações de perclorato não são uniformes na superfície marciana, o que poderia promover a existência de algumas áreas menos nocivas aos microrganismos.
Uma das possibilidades, de acordo com os astrobiólogos, seria encontrar vida no subsolo de Marte. Para confirmar essa hipótese, no entanto, as missões futuras ao planeta deveriam prever perfurações de até três metros na superfície.

13.273 – Astronomia – As Luas de Saturno


luas de saturno,
Saturno tem mais de 60 luas misteriosas. Elas têm oceanos subterrâneos, vulcões de gelo e seriam boas para esquiar. Veja a seguir uma lista com algumas descobertas curiosas sobre algumas luas desse complexo planeta.
A Nasa, agência espacial americana, divulgou a notícia de que Encélado, uma das 60 luas de Saturno, pode conter vida microscópica. Esse oceano fica no polo sul de Encélado e pode abranger boa parte da lua, que tem 500 quilômetros de diâmetro. O mar tem 10 quilômetros de profundidade sob uma grossa espessura de 30 a 40 quilômetros de gelo. No seu fundo estão rochas que podem favorecer o desenvolvimento de pequenas formas de vida.
O oceano subterrâneo não é a única característica impressionante de Encélado. O Observatório espacial Herschel já fotografou vapor de água deixar a lua e formar um grande anel em torno de Saturno. Os cerca de 250 kilos de vapor são expelidos em direção ao planeta a cada segundo por meio de jatos na região do seu polo sul. O anel de vapor possui um raio 10 vezes maior que o do planeta dos anéis mas, apesar de seu enorme tamanho, ele nunca havia sido detectado por ser transparente na luz visível. Com comprimentos infravermelhos do Herschel, no entanto, ele aparece.
Encélado também poderia ser o destino perfeito para turistas espaciais em buscas de esportes na neve. De acordo com dados obtidos pela sonda Cassini, a lua possui, em alguns pontos, uma grossa cobertura de neve. Mapas em alta resolução confirmaram a existência de cristais de gelo mais finos do que talco em pó e que seriam perfeitos para esquiadores. Ao analisar o gelo, os cientistas descobriram que a neve se precipita em um padrão previsível e muito lento: para formar os 100 metros de cristais acumulados, foram necessários cerca de 10 milhões de anos. As grandes ondulações, que escondem um terreno não tão uniforme, terminam em cânions de até 500 metros de profundidade e 1,5 quilômetro de comprimento.
A sonda espacial Cassini, da Nasa, já encontrou um ingrediente do plástico em Titã, maior lua de Saturno. Pequenas quantidades de propileno foram detectados nas camadas mais baixas da atmosfera do satélite. Na Terra, o propileno se junta em longas cadeias e forma o polipropileno, usado na fabricação de copos, brinquedos, material hospitalar, entre outros. Um instrumento da sonda mediu o calor vindo de Saturno e de suas luas, o que comprovou a existência do material. Segundo a Nasa, a detecção reforça a esperança dos cientistas de encontrar outros produtos químicos escondidos na atmosfera de Titã. Essa lua de Saturno tem uma crosta de gelo em sua superfície. A atmosfera é densa, rica em materiais orgânicos, e formada por hidrocarbonetos, compostos químicos constituídos de átomos de carbono e hidrogênio, que se ligam a oxigênio, nitrogênio e enxofre (componentes que estão na base do petróleo e dos combustíveis fósseis da Terra).
Um estudo da Nasa indicou uma possível existência de blocos de gelo na superfície de lagos e mares em Titã. As informações coletadas pela sonda Cassini indicam que Titã pode ter blocos de compostos de hidrogênio e carbono (hidrocarbonetos) congelados na superfície dos lagos e mares de hidrocarboneto líquido. Antes, os pesquisadores imaginavam que os lagos de Titã não tinham gelo flutuante porque o metano sólido é mais denso do que o metano líquido e afundaria. Agora, eles sabem que é possível obter metano e etano em blocos finos que congelam juntos. Etano e metano são moléculas orgânicas cruciais em uma química complexa que pode fazer surgir vida. Apesar da possibilidade de vida em Titã, a temperatura no local é muito baixa. O único líquido que existe em maior abundância na superfície é o metano. Embora tenha uma riqueza em elementos orgânicos, as temperaturas na superfície são muito baixas.
Cientistas da Nasa já descobriram que existe oxigênio em Dione, uma das luas de Saturno. Cassini detectou íons de oxigênio molecular perto da superfície gelada da lua, devido ao bombardeamento por partículas presas no campo magnético de Saturno. Dione é um mundo árido e gelado. Segundo os astrônomos, o astro possui alguns atributos que o tornam adequado para a vida como a conhecemos. Segundo os cientistas, a produção de oxigênio parece ser um processo universal em luas geladas, banhadas por uma forte radiação e presos em um ambiente de plasma.
A sonda Cassini, da Nasa, também já encontrou um rio Nilo em versão miniatura na superfície de Titã. Segundo a Nasa, o curso hídrico tem 400 quilômetros de extensão. Embora o rio tenha alguns meandros, ele é praticamente reto e apresenta um curso na forma líquida. A diferença entre o Nilo e o rio de Titã não está apenas em um deles estar na Terra e o outro em Saturno. O rio encontrado por Cassini não é composto por água, mas por hidrocarbonetos como o metano ou o etano. De acordo com a Nasa, a trajetória do rio de Titã é praticamente reta. Isso indica que o rio segue uma fratura presente na superfície da lua de Saturno. Essas fraturas não significam que exista uma placa tectônica em Saturno, como acontece na Terra. Mas elas podem levar à formação de bacias e de grandes mares.
Além de gelo flutuante, Cassini encontrou evidências que indicam a presença de um possível vulcão de gelo em Titã. A tese é a de que algum tipo de atividade geológica subterrânea possa aquecer o interior dos corpos gelados e, assim, derreter gelo e outros materiais que sairiam através de uma abertura na superfície. Tais vulcões funcionariam de forma similar aos que expelem lava na Terra e em Júpiter, por exemplo. Utilizando radares, a nave Cassini conseguiu juntar informações para acriação de um mapa 3D da região, que se revelou bastante parecida ao monte Etna, na Itália, e ao Laki, na Islândia.

encelado

13.256 – Bioastronomia – Sistema Solar reside num pequeno oásis galáctico para a vida


sol-galaxia-ressonancia
Segundo um estudo recente, o Sistema Solar está localizado no lugar certo da Via Láctea para permitir a existência de vida — um “oásis” relativamente pequeno em meio a uma galáxia largamente inóspita.
O trabalho, aceito para publicação no periódico “Astrophysical Journal”, foi liderado por Jacques Lépine, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, e envolveu a combinação entre dados precisos de posições de estrelas jovens e cálculos detalhados de suas órbitas ao redor do centro galáctico.
A Via Láctea é uma galáxia espiral de porte respeitável, com cerca de 100 mil anos-luz de diâmetro e pelo menos 100 bilhões de estrelas, das quais o Sol é apenas uma. Todas elas estão em órbitas ao redor do núcleo da galáxia, onde reside um enorme buraco negro. Mas nosso astro-rei está bem afastado do centro, localizado a 26 mil anos-luz de lá — mais ou menos a metade do caminho até a periferia galáctica.
Há algumas décadas, ao analisarem as diferenças circunstanciais entre as regiões mais centrais da galáxias (com alta densidade de estrelas) e as partes mais afastadas (em geral povoadas por estrelas com baixo conteúdo de elementos mais pesados, como carbono, oxigênio e ferro), os astrônomos começaram a trabalhar o conceito de “zona habitável galáctica” — uma faixa ao redor da Via Láctea onde a potencial presença de vida seria mais favorecida.
O raciocínio básico é que, nas regiões mais internas, devido à grande concentração de estrelas, não só os sistemas planetários estão mais sujeitos a desestabilização por encontrões entre estrelas vizinhas como também existe maior risco de esterilização por explosões de supernovas próximas.
Em compensação, nas regiões mais externas, o problema é a falta de elementos químicos pesados, que são essenciais à formação de planetas habitáveis e, em última análise, de seus potenciais habitantes.
Restaria portanto apenas um anel a uma distância média do centro galáctico que teria as condições certas para a vida. O Sol, naturalmente, estaria nessa faixa.
Em tempos recentes, inclusive, houve pesquisadores defendendo a hipótese de que se podia estabelecer uma correlação entre as extinções em massa que aconteceram em nosso mundo com as potenciais travessias pelos braços galácticos, embora essa conexão nunca tenha sido estabelecida de forma clara. E agora sabemos o porquê.
O estudo dos pesquisadores da USP mostra que, na verdade, o Sol nunca cruza os braços espirais da Via Láctea. Nunca.
De acordo com os cálculos, nossa estrela está presa num padrão de ressonância que faz com que o período de sua órbita — cerca de 200 milhões de anos — seja o mesmo dos braços espirais. Ou seja, se o Sol avança em seu percurso galáctico no mesmo ritmo que o braço de Sagitário, que vem antes dele, e que o braço de Perseu, que vem depois, eles jamais se encontram.
A descoberta também ajuda a explicar a existência de um braço anômalo na nossa região da Via Láctea, chamado de “Braço Local”, que consiste em essência numa estranha fileira de estrelas. Essas são justamente as estrelas que, a exemplo do Sol, ficaram presas nesse padrão de ressonância e também nunca têm um encontro potencialmente desagradável com os braços galácticos.
Se a travessia dos braços realmente oferece perigo para a vida — algo que não sabemos com certeza –, o trabalho deve levar a uma importante revisão do conceito de “zona habitável galáctica”, restringindo-a somente a essas áreas onde as estrelas são capturadas nesse padrão particular de ressonância. De acordo com os pesquisdores, existe um desses “oásis” entre cada um dos quatro braços espirais da Via Láctea — são quatro, portanto.
Confira a seguir uma pequena entrevista que o Mensageiro Sideral fez com Jacques Lépine, o autor principal do estudo.

13.081 – Descoberta de Vida Extraterrestre pode estar próxima


astrobiologia
Em 1975, o famoso astrofísico Carl Sagan sugeriu que poderia existir vida nas camadas superiores da atmosfera de Júpiter.
Esses organismos se alimentariam diretamente da luz solar e seriam capazes de se locomover pela atmosfera controlando a pressão dos seus corpos. Sua teoria nunca pôde ser comprovada, mas ele trouxe um novo rumo no que diz respeito à procura por vida extraterrestre.
Anos depois, Jill Tarter, pesquisador do projeto SETI, identificou um novo tipo de astro: as anãs marrons frias. Esses corpos celestes possuem a maior parte dos elementos necessários para a vida: carbono, hidrogênio, nitrogênio e oxigênio. Os cientistas acreditam que diferentes tipos de criaturas poderão habitar suas atmosferas, que têm temperaturas parecidas com as da Terra.
Até o momento, foram encontradas apenas algumas dezenas de anãs marrons frias, mas os especialistas acreditam que poderão existir pelo menos dez em um raio de 30 anos luz da Terra. Se confirmada essa teoria, será possível iniciar a busca por vida terrestre nas proximidades do nosso planeta.
Em 2018, o novo Telescópio Espacial James Webb será colocado em órbita. Suas capacidades técnicas, consideravelmente superiores ao seu antecessor Hubble, tornarão possível a identificação desses astros vizinhos.

12.853 – Sinais de vida: NASA detecta vapor de água em lua de Júpiter


lua-jupter-europa-_muratart_-shutterstock
A NASA, confirmou recentemente que o telescópio Hubble detectou o que parecem ser colunas de vapor d’água irrompendo de Europa, uma das luas do planeta Júpiter.
Geoff Yoder, diretor interino da agência espacial norte-americana, explicou a importância da descoberta: “O oceano de Europa é considerado um dos locais mais promissores do Sistema Solar, onde há grande potencial de existir vida”.
A superfície de Europa é coberta por um oceano maior que todos os oceanos da Terra juntos e está revestida de uma espessa camada de gelo.
Se confirmada a descoberta, os pesquisadores poderão coletar amostras de água e tentar definir o grau de habitabilidade do satélite.
Dadas as limitações tecnológicas, é difícil determinar com exatidão se as imagens registradas pelo Hubble correspondem realmente a uma coluna de vapor d’água emergindo da superfície do satélite – na imagem acima, na parte inferior, à esquerda. No entanto, diante de uma hipótese tão promissora, a NASA planeja enviar uma sonda não tripulada para analisar o território na próxima década.
Em 2018, o James Webb Space Telescope estará pronto para funcionamento. Trata-se de um telescópio de altíssima resolução, projetado especialmente para observar com maior precisão a lua de Júpiter.

12.521- Estudo da NASA indica que lua de Júpiter pode abrigar vida


europa_-_lua_-_jupiter

Um novo estudo da NASA sobre Europa, uma das luas de Júpiter, levou a uma descoberta surpreendente.
De acordo com os cientistas da agência espacial norte-americana, o satélite pode ter as condições químicas ideais para abrigar vida. O estudo se baseia na teoria de que existe um oceano de água salgada abaixo de sua superfície.
Segundo a pesquisa, o equilíbrio na produção de hidrogênio e oxigênio na pequena lua é comparável ao da Terra, o que significa que a base para a criação da vida pode estar presente. Durante o estudo, a equipe descobriu que a produção de oxigênio em Europa é 10 vezes maior que a de hidrogênio, proporção similar à de nosso planeta.
O pesquisador da NASA Kevin Hand comparou a interação entre a superfície da lua e seu mar abaixo do gelo com uma bateria gigante que poderia gerar vida no oceano. “Os oxidantes do gelo são como o polo positivo da bateria, e os elementos químicos do fundo do mar, chamados de redundantes, são como o polo negativo”, explica. “Descobrir se o processo biológico completa o circuito é uma das motivações para explorarmos Europa”, completa.
A NASA atualmente planeja uma missão à Europa. O objetivo é enviar uma sonda que passará próxima à superfície do satélite para obter imagens em alta resolução. A missão está em seu estágio inicial, mas deve ser colocada em prática na década de 2020. Durante anos a sonda deve coletar uma grande quantidade de dados para determinar se a lua de Júpiter pode mesmo abrigar vida.

12.501 – Exobiologia – Pesquisa aponta que mamíferos podem se desenvolver no espaço


Uma recente experiência realizada por cientistas chineses aponta para um resultado extraordinário.
Pela primeira vez na história, foi provado que os estágios iniciais de embriões de mamíferos podem se desenvolver completamente no ambiente espacial. A pesquisa foi feita com a ajuda do primeiro satélite de microgravidade do país, o SJ-10.
Fotos de alta-resolução enviada pelo SJ-10 mostram que embriões de camundongos levados em uma cápsula do satélite completaram o processo de desenvolvimento em 96 horas. Essa foi a primeira vez que isso ocorreu no espaço de forma bem-sucedida. Foram levados mais de seis mil embriões de camundongos em uma câmara fechada do tamanho de um micro-ondas.
“A raça humana ainda tem um longo caminho pela frente antes de colonizar o espaço. Mas antes disso, temos que descobrir se é possível sobreviver e se reproduzir em um ambiente fora da Terra”, disse Duan Enkui, cientista que participa das pesquisas. De acordo com ele, agora está provado que o passo mais crucial na reprodução – o desenvolvimento inicial do embrião – é possível no espaço.

12.472 -Astronomia – Mais sobre os Exoplanetas


vida_no_espaco_0
Dessa vez, a descoberta vai além da mera possibilidade: na Bélgica, um grupo de cientistas encontrou três planetas muito parecidos com a Terra – e, pela primeira vez, são astros que permitem que se estude a atmosfera local para determinar se há ou não vida por lá.
Os planetas estão a cerca de 36 anos-luz de distância da Terra, e orbitam uma estrela batizada de Trappist-1, que é bem menor, menos brilhante e mais fria do que o nosso Sol. Os planetas, que têm quase o mesmo tamanho da Terra, estão quase 100 vezes mais próximos da Trappist do que nós do Sol. A tal estrela foi descoberta por um time de astrônomos da Universidade de Liège, na Bélgica, fica na constelação de Aquário, e é tão pequena que sequer pode ser vista a olho nu daqui.
Mas é justamente por isso que a descoberta é tão importante. O raciocínio é o seguinte: para determinar se um planeta pode ou não abrigar vida, os cientistas precisam estudar os gases que formam a atmosfera local. Para isso, eles analisam a deformação da luz no planeta – a lógica é que, como cada gás deforma a luz de um jeito específico, dá para determinar que gases estão presentes por ali. O problema disso é que as estrelas maiores e mais quentes, que costumam ser as primeiras apostas para procurar vida, ofuscam tudo o que estiver próximo a elas (mais ou menos como o Sol durante o dia, aqui na Terra), o que torna impossível essa análise de gases. E aqui está a novidade: a Trappist é tão escura e pequena que os astrônomos conseguem enxergar o caminho da luz nos três planetas e determinar a composição gasosa de cada atmosfera. Bingo!
O engraçado é que, até agora, ninguém havia prestado muita atenção na tal estrelinha. Mas foi só observar o sistema um pouco mais para perceber que uma organização planetária desse tipo nunca havia sido encontrada antes. Por isso, os cientistas belgas estão otimistas: no artigo em que revelam a descoberta, eles concluem dizendo que “se vamos começar a procurar vida na galáxia, este com certeza é o melhor lugar”.

11.321 – Astronomia – Exoplanetas


kepler e terra
Astrônomos procuram exoplanetas (ou planetas extrassolares) que podem ser propícios à vida, estreitando a busca para planetas rochosos que orbitem dentro da zona habitável de suas respectivas estrelas. Desde 1992, centenas de planetas em torno de outras estrelas na Via Láctea foram descobertos. Em 14 agosto de 2014, o Extrasolar Planets Encyclopaedia identificou 1 815 planetas extrassolares. Os planetas extrassolares variam muito em tamanho e vão desde a planetas rochosos semelhantes à Terra, até gigantes gasosos maiores do que Júpiter.Espera-se que o número de exoplanetas observados aumente consideravelmente nos próximos anos. Como a sonda Kepler precisa ver três trânsitos estelares por cada exoplaneta antes de identificá-lo como candidato a planetas, até agora ela apenas foi capaz de identificar planetas que orbitam sua estrela a uma taxa relativamente rápida.
A missão deverá continuar pelo menos até 2016, tempo em que se espera que muitos mais candidatos a exoplanetas sejam encontrados.
Em 24 de abril de 2007, os cientistas do Observatório Europeu do Sul em La Silla, no Chile, disseram que tinham encontrado o primeiro planeta parecido com a Terra. O planeta, conhecido como Gliese 581 c, orbita dentro da zona habitável de sua estrela, a Gliese 581, uma anã vermelha que está a 20,5 anos-luz (194 trilhões de km) da Terra. Pensou-se inicialmente que este planeta poderia conter água líquida, mas simulações computacionais recentes do clima em Gliese 581 c feitas por Werner von Bloh e sua equipe no Instituto Alemão para Pesquisa do Impacto Climático sugeriram que o dióxido de carbono e o metano na atmosfera criariam um aumento do efeito estufa. Isso aqueceria o planeta bem acima do ponto de ebulição da água (100 graus Celsius), o que desestimula as esperanças de encontrar vida.
omo resultado de modelos de efeito estufa, os cientistas estão agora voltando sua atenção para Gliese 581 d, que fica fora da zona habitável tradicional da estrela. Em maio de 2011, os pesquisadores previram que Gliese 581 d, não só está na “zona habitável”, onde a água pode estar presente sob a forma líquida, mas é grande o suficiente para ter uma atmosfera de dióxido de carbono estável e “quente o suficiente para ter oceanos, nuvens e precipitação “, segundo o Centro Nacional de França para a Investigação Científica.Em dezembro de 2011, a NASA confirmou que Kepler-22b, distante 600 anos-luz, tem 2,4 vezes o raio da Terra e é, potencialmente, o planeta mais próximo da Terra em termos de tamanho e temperatura.

11.160 – Essa célula alien pode sobreviver em Titã?


tita1

Titã, uma das luas de Saturno, é uma das grandes apostas de cientistas em relação a mundos que possam abrigar vida. Mas, claro, ela tem um ambiente muito hostil para que a vida como nós a conhecemos aqui na Terra sobreviva. Mas e se houvesse uma forma de vida como nós NÃO conhecemos?
É com essa teoria que pesquisadores da Universidade de Cornell trabalharam. Eles criaram o modelo de uma célula alien baseada e metano (sem necessidade de oxigênio) que poderia sobreviver nas condições de Titã.
Na pesquisa, publicada no periódico Science Advances, eles descrevem uma membrana celular feita de pequenos compostos de hidrogênio e capaz de funcionar com metano líquido a uma temperatura de – 144 ºC. Esse modelo é inspirado em moléculas terrestres com base de água, que formam uma membrana similar capaz de proteger seu material orgânico. Como em Titã a água não estaria disponível, eles trabalharam com o metano líquido.
Essa célula, construída também de nitrogênio, carbono e hidrogênio (disponíveis no satélite) seria tão estável e flexível quanto uma terráquea.
Agora o próximo passo é criar um modelo que mostre que tipo de indicadores uma forma de vida baseada nessas células produziria. Assim, astrobiólogos poderiam buscar por esses sinais na atmosfera de Titã – e, quem sabe, encontrar a vida alienígena que tanto buscamos.

11.126 – Astrobiologia


astrobiologia2

Também conhecida como exobiologia e xenobiologia, é um ramo da Ciência atualmente considerado com muita seriedade. Ela investiga a existência nos planos extraterrestres, como a vida se processa fora da Terra e como ela exerce influência sobre o funcionamento do Universo.
Os profissionais deste campo buscam indícios de qualquer espécie de vida em outros astros e até mesmo em nuvens interestelares, procurando também entender como contextos externos ao Planeta Terra influenciam o desenvolvimento de seres vivos. Esta complexa área de pesquisas une-se a disciplinas como a Astronomia, a Geologia, a Física, a Química e a Biologia para melhor compreender seu objeto de estudo, constituindo-se assim em uma ciência interdisciplinar.
Esta expressão surgiu no começo dos anos 60, elaborada por Joshua Lederberg, médico norte-americano, especialista em biologia molecular. Ele trabalhou para a Nasa em projetos experimentais que envolviam a procura de vida no planeta Marte. A Astrobiologia é uma área de estudos bem recente e deriva da Biologia. Ela se dedica a compreender como a vida é preservada e em que condições ela pode existir no âmbito externo da Terra.
Os especialistas tentam entender melhor o contexto da vida no nosso Planeta, como ela nasceu e se aprimorou na esfera terrena, que princípios a regem, o que possibilita a Terra ser uma dimensão capaz de abrigar uma variada e rica gama de espécies vivas. Assim estes estudiosos vão poder usar estes dados para orientar sua procura de organismos vivos em outras esferas.
A Astrobiologia se preocupa em descobrir, assim, como a existência se tornou possível na Terra; se já houve ou há seres vivos em outras esferas do Sistema Solar; se a vida é algo comum no Universo ou uma exceção; se há uma conexão entre o surgimento do Universo e o aparecimento da vida; se a existência é um resultado compulsório da evolução universal ou uma casualidade que só ocorreu em nosso Planeta – se há aqui a interferência dos planos divinos, então não cabe a esta ciência adotar como alvo de investigação a vida no Universo, pois o Homem não tem como acessar os complexos propósitos de Deus -; se os organismos vivos são regidos por leis gerais; entre outras indagações.
Há atualmente na NASA um vasto projeto de estudos e pesquisas neste campo. Em várias universidades do Planeta há estudiosos atentos a este tema, e já é possível encontrar vários cursos de graduação nesta área. A Astrobiologia tende a crescer nos próximos anos; há previsões inclusive de que ela venha a se converter no ramo mais ativo, estimulante e fascinante da Astronomia.
Recentemente os astrônomos encontraram no Universo a presença de mais de oitenta planetas, exteriores ao Sistema Solar, o que reforça a certeza de que no Cosmos pode haver inúmeros astros e aumenta a possibilidade de se encontrar planetas como o nosso, igualmente habitados. Ou seja, torna-se mais viável a existência de ambientes que preencham os requisitos necessários para o florescimento da vida.

10.672 – Cientistas divulgam primeira fotografia de um organismo extraterrestre e provam a existência de vida fora da Terra


vida-extraterrestre-encontrada-noticias-history-channel

Uma equipe de pesquisadores da Universidade de Sheffield e do Centro de Astrobiologia da Universidade de Buckingham, no Reino Unido, revelou para o mundo uma fotografia inquietante de um organismo misterioso. Ele teria sido submetido a várias análises, que o indicaram como o primeiro indício inequívoco da existência de vida extraterrestre. Trata-se de uma pequena estrutura denominada “partícula do dragão”, com um comprimento que não passa de 10 micrometros e que, segundo seus descobridores, representa uma “entidade biológica”, composta por carbono e oxigênio, elementos primordiais para a vida.
Eles chegaram à partícula por meio de um balão aerostático, que foi enviado à estratosfera, a 27 km acima da atmosfera terrestre, com o objetivo de coletar substâncias espaciais durante uma chuva de meteoros. Os especialistas descartam qualquer possibilidade de esta partícula ter chegado ao espaço através de nosso planeta. Eles acreditam que ela tenha surgido em algum outro lugar do universo.
Milton Wainwright, um dos responsáveis pela pesquisa, afirmou que essa descoberta não apenas prova a existência de formas de vida de outros planetas, mas também que organismos alienígenas caem bastante sobre nosso planeta. “A análise científica da estrutura mostra que ela é feita de carbono e oxigênio e não há possibilidades de ser um detrito cósmico ou vulcânico ”, disse Wainwright, que, no entanto, ainda tem dúvidas se este é um organismo singular ou se é parte de outro organismo maior. “Essas descobertas poderiam alterar para sempre nossa percepção da vida e da evolução da Terra. Será necessário reescrever nossos livros de biologia”.

10.372 – Astrônomos acham vapor d’água em planeta pequeno fora do Sistema Solar


planeta com vapor

Combinando observações de três diferentes telescópios espaciais, astrônomos conseguiram pela primeira vez detectar vapor d’água na atmosfera de um planeta de porte relativamente pequeno fora do Sistema Solar.
Ainda não tão diminuto quanto a Terra, mas bem menor que gigantes gasosos como Júpiter –os únicos até então a ter sua composição atmosférica estudada.
Conhecido pela sigla HAT-P-11b, o planeta orbita uma estrela um pouco menor que o Sol a 122 anos-luz de distância, na constelação do Cisne.
Ele tem o tamanho aproximado de Netuno e foi investigado pelos cientistas usando os telescópios Hubble, Spitzer e Kepler.
Os dois primeiros tinham por objetivo captar a luz emanada da estrela que passasse de raspão pela atmosfera do planeta, carregando consigo a “assinatura” de sua composição química.
Já os dados do Kepler permitiram estudar especificamente o brilho da estrela, para se certificar de que qualquer medição feita fosse mesmo do planeta, e não proveniente de manchas estelares.
Eis que, com isso, surgiu a assinatura clara da presença de água, assim como de vastas quantidades de hidrogênio, na alta atmosfera de HAT-P-11b.
Tentativas anteriores de medir a atmosfera de exoplanetas pequenos já haviam sido feitas pelo mesmo grupo, mas em todos os casos acabaram frustradas pela presença de nuvens na alta atmosfera, que impediram qualquer detecção.

“A descoberta mais significativa da nossa pesquisa é que de fato achamos uma atmosfera limpa [sem nuvens] num exoplaneta pequeno”, disse à Folha Jonathan Fraine, da Universidade de Maryland, primeiro autor do trabalho publicado na revista “Nature”.
Muito próximo de sua estrela e gasoso como Netuno, o HAT-P-11b é quente demais, inadequado para a presença de vida como a conhecemos.
Contudo, o achado mostra que os cientistas estão num bom caminho para encontrar planetas que tenham temperaturas mais amenas e suficiente quantidade de água para suportar uma biosfera similar à terrestre.

8912 – Câmera de celular vai ajudar na busca de vida extraterrestre


marte-atmosfera

Pesquisadores alemães transformaram uma simples câmera de telefone celular em ferramenta de busca por evidências de vida em paisagens áridas e aparentemente desabitadas. O aparelho recebeu o nome de Astrobiólogo Ciborgue e poderá ser usado em futuras sondas espaciais, para procurar por sinais de vida extraterrestre. A tecnologia foi apresentada nesta segunda-feira no Congresso Europeu de Ciência Planetária.
Os cientistas da Universidade Livre de Berlim, na Alemanha, trabalham há mais de uma década na criação de novas técnicas que possam dar mais autonomia às sondas robóticas enviadas a outros planetas. A intenção da equipe é que elas possam vasculhar as paisagens locais e escolher os pontos mais interessantes para realizar investigações geológicas e biológicas sem a necessidade da intervenção humana.
Em sua versão atual, o Astrobiólogo Ciborgue usa uma câmera de celular para tirar fotos de suas imediações e enviá-las, via Bluetooth, a um computador portátil. A máquina processa as imagens em busca de cores e texturas características, e comunica de volta ao celular o grau de semelhança entre a paisagem e imagens anteriores armazenados em seu banco de dados.
“O nosso sistema começou como uma grande câmera em um tripé, acoplada a um computador. Ao longo dos anos ele foi diminuindo e agora é composto por apenas um smartphone e um laptop. Estamos trabalhando para colocar tudo isso em apenas um celular — e, eventualmente, em uma sonda espacial”, diz Patrick McGuire, pesquisador da Universidade Livre de Berlim que comanda o desenvolvimento da tecnologia.
As sondas atualmente empregadas pelos astrônomos para explorar Marte dependem da orientação dos cientistas para escolher quais áreas do planeta devem receber uma análise mais detalhada. Mas o atraso na transmissão e recepção dos comandos terrestres pode consumir entre 4 e 24 minutos, dependendo das posições da Terra e de Marte. O processo ganharia velocidade se os robôs fossem capazes de identificar na paisagem cores e texturas criadas por processos geoquímicos ou biológicos — que possam ser um sinal de vida passada ou presente no planeta.
O sistema Astrobiólogo Cyborg foi testado pelos pesquisadores na Terra, em locais que simulam as condições encontradas em Marte, fotografando falésias de gesso, arenitos vermelhos, calcários e argilitos. Algumas das pedras analisadas estavam parcialmente cobertas com líquen, uma forma de vida que poderia ser semelhante à existente em outros planetas.
Segundo os pesquisadores, a comparação das paisagens com imagens no banco de dados do computador foi bem-sucedida. “Em nossos testes mais recentes, realizados em uma antiga mina de carvão, as semelhanças encontradas pelo computador estiveram de acordo com o julgamento de geólogos durante 91% do tempo. A detecção de novidades no terreno também funcionou bem, embora o sistema tenha tido alguns problemas na hora de diferenciar formações semelhantes em cor, mas diferentes em textura — como o líquen amarelo e o carvão manchado de enxofre. No entanto, para um primeiro teste, a técnica parece muito promissora”.

8838 – Exobiologia – Bactérias do espaço


O carbono e o hidrogênio, elementos essenciais para o aparecimento de qualquer forma biológica, existem em relativa abundância nas diversas galáxias. Mas isso ainda não resolve o mistério. O que os cientistas estão procurando, em outros planetas, são os compostos orgânicos que serviram de base para a formação das espécies que conhecemos. Esses compostos são os aminoácidos e os nucleotídeos, os ingredientes básicos das moléculas de DNA e RNA. Os radiotelescópios vasculham a Via Láctea em busca de algum lugar parecido com a Terra em sua origem, há 4,5 bilhões de anos. Na realidade, estamos procurando no espaço a resposta à mesma pergunta que, há séculos, a humanidade vem fazendo a si mesma: como, exatamente, a Terra virou a casa de seres vivos?
Numa ponta, os caçadores de mensagens de ETs estão no encalço de um possível resultado final da evolução: seres inteligentes, capazes de se comunicar com outras civilizações e, quem sabe, até de jogar uma partida de xadrez. Na outra ponta, os cientistas buscam no espaço os ingredientes que permitiram a essa mesma evolução selecionar os mais “aptos”, moléculas com a capacidade de carregar informações e passá-las adiante. Vivas, portanto. O problema é que só conhecemos um tipo de evolução – a do planeta Terra – e um tipo de Biologia, que tem como alicerces os compostos orgânicos que formam o DNA e o RNA. Não sabemos se pode haver formas biológicas em bases diferentes.
A maioria dos cientistas acha que elas só podem se constituir a partir dos mesmos elementos que existiam na Terra nos primórdios de sua formação: carbono, hidrogênio, nitrogênio, oxigênio e água em estado líquido. Cientistas dissidentes apostam na existência de formas alternativas. As especulações abrangem desde seres que utilizam como solvente a amônia, em lugar da água, até criaturas fantásticas capazes de se reproduzir em ambientes de puro magnetismo (os plamobos) ou radiação (os radiobos). O Universo não deve ser encarado como um deserto, esparsamente povoado por plantas idênticas que só podem ser encontradas em nichos raros e especializados, escreveram os biólogos Robert Shapiro e Gerald Feinberg. “Preferimos vê-lo como um jardim botânico com incontáveis espécies de plantas, cada qual no seu próprio canteiro”.

A terra como era
As pistas dos aliens podem estar aqui mesmo.
Na busca de seres vivos em outros planetas, o ponto de referência é a evolução na própria Terra, dos primeiros microorganismos, há 3,5 bilhões de anos, quando o cenário era dominado por erupções vulcânicas e descargas elétricas, até os primeiros hominídeos, a cerca de 2 milhões de anos atrás.
Micróbios radicais
Habitantes das geleiras e vulcões podem ajudar na busca dos micro-ETs.
O estudo dos planetas do Sistema Solar mostrou que eles são, na maioria, inóspitos. Pesquisadores passaram, então, a estudar, na Terra, ecossistemas parecidos com os ambientes extraterrestres, para saber se eles possibilitariam a existência de vida. Um número surpreendentemente grande de bactérias foi descoberto em lugares que se acreditava estéreis, como crateras de vulcões e as geleiras da Antártida.
Uma dessas bactérias, o Methanocococcus jannaschii, que vive em temperaturas de cerca de 185 graus, foi encontrada em vulcões submersos, no fundo do mar. Ao contrário da maioria, o Methanococcus vive exclusivamente de gás carbônico, hidrogênio e nitrogênio. O oxigênio o mata. Microorganismos também já foram encontrados no subsolo siberiano e em depósitos de sal. Outras bactérias são capazes de suportar doses de radiação em torno de 2 milhões de rad (450 rad são suficientes para matar um homem).
Somos todos alienígenas?
Teóricos da panspermia acreditam que os terráqueos são originários do espaço.
Os primeiros micróbios surgiram aqui mesmo ou foram importados do espaço? A experiência de Miller convenceu os cientistas de que as condições da Terra são favoráveis à formação de compostos orgânicos. Entretanto, estudos feitos em crateras da Lua mostram que, bilhões de anos atrás, a Terra era alvo constante de meteoritos. A análise de alguns desses meteoritos revelou a presença de aminoácidos. Os cientistas passaram a especular, então, que os ingredientes da vida podem não ter se formado aqui, mas ter chegado à Terra a bordo de meteoritos.
A mais radical dessas especulações é anterior à descoberta de compostos orgânicos nos meteoritos. Em 1908, o químico sueco Svante Arrhenius propôs que os próprios seres vivos teriam vindo do espaço, a bordo de meteoritos ou de cometas. Sua teoria, que proponha que esporos de bactérias teriam chegado à Terra semeando o planeta de vida, ficou conhecida como panspermia.
A teoria foi ampliada mais tarde pelo astrônomo britânico Fred Hoyle e por seu colega Chandra Wickramasingue. Ambos lançaram uma tese que mistura a panspermia com a teoria da evolução, de Charles Darwin (1809-1882). Para eles, não foram apenas os micróbios que chegaram do espaço, mas também o programa genético necessário à evolução.
De acordo com a teoria da evolução, os organismos mais aptos são selecionados ao longo do tempo. Com a descoberta da molécula de DNA, ficou claro: o combustível para a seleção natural são as mutações que acontecem no interior dos genes. Hoyle e Wickramasingue acreditam que genes alienígenas, oriundos dos espaço, tiveram um papel importante na seleção natural.

8020 – Astronomia – Vida Inteligente?


Rara e Valiosa
A agência espacial americana Nasa autorizou a construção de um satélite caçador de planetas parecidos com a Terra, mas que giram em torno de estrelas distantes. Com o nome de Tess (do inglês “Transit Exoplanet Survey Satellite”), ele identificará a ligeira queda da luz estelar provocada pela passagem de um planeta à frente de uma estrela, o método do “trânsito”, e deverá ser lançado em 2017.
Kepler, a missão atual, usa o mesmo método e vem identificando milhares de potenciais planetas e confirmando centenas deles. Tess buscará planetas em uma região bem mais ampla do céu, focando em estrelas mais brilhantes.

Com isso, cientistas esperam identificar planetas mais parecidos com a Terra. A questão é saber quão raro é o nosso planeta, já que a maioria das estrelas tem planetas orbitando à sua volta.
Nossa galáxia, a Via Láctea, tem em torno de 200 bilhões de estrelas. Se pelo menos metade delas tem planetas e se, em média, estrelas têm em torno de quatro planetas, chegamos a 400 bilhões de planetas só na nossa galáxia.
Como não só planetas mas também suas luas podem ter condições favoráveis à vida, o número pode chegar a um trilhão de mundos. Sabemos que ao menos um planeta nesse trilhão tem vida. Quantos outros podem ter? Milhões? Centenas? Nenhum?
Parte da resposta depende justamente da frequência com que planetas rochosos como a Terra aparecem dentro da “zona habitável”, a região em torno de uma estrela onde planetas e luas podem ter água líquida. A complicação é que certas luas fora dessa zona podem ter água líquida, como é o caso de Europa, a lua de Júpiter, que tem um oceano com quatro vezes mais água do que todos os oceanos da Terra, sob uma camada de gelo de dois quilômetros de espessura.
ortanto, um otimista diria que o Universo é cheio de vida, que é questão de tempo até acharmos algum sinal disso. Afinal, com tantos planetas e luas por aí… Só que a vida é algo muito complexo. O primeiro passo –reações químicas que de alguma forma geram vida da não vida– não é algo trivial. Tanto que não temos a menor ideia de como repeti-lo no laboratório.
Missões como Kepler e Tess poderão até identificar traços de substâncias ligadas à vida na atmosfera de exoplanetas, como o ozônio e o oxigênio. Se isso ocorrer, teremos evidência de que a vida pode existir por lá. E é muito provável que algum tipo de vida simples exista em outros mundos.
Mas se você for um entusiasta de inteligências extraterrestres, a coisa fica bem mais difícil. Da vida simples aos seres multicelulares –e destes aos inteligentes– há muitos obstáculos que dependem dos detalhes da história do planeta.
Junte-se a isso a ausência de contato com “eles” e vemos que provavelmente estamos sós. Se não sós, ao menos isolados neste canto da galáxia. O que significa que somos raros e valiosos. Essa é uma das grandes revelações da ciência atual. Basta o mundo se convencer disso e começar a mudar.

Marcelo Gleiser, astrônomo brasileiro