13.389 – Educação – Por que é tão difícil aprender matemática?


Matematica
A dificuldade de estudar matemática nem sempre está associada ao conceito. Muitos alunos conseguem somar, diminuir e efetuar problemas matemáticos quando perguntados de maneira informal. Porém, quando se deparam com o exercício escrito não conseguem desenvolver o raciocínio.
A maioria das dificuldades começa no ensino básico e vai se arrastando durante os demais anos escolares. Mas é importante lembrar que até passar no vestibular, terminar a escola, no trabalho e em muitos momentos cotidianos de nossas vidas a matemática está presente. É necessário ter os conhecimentos mínimos da disciplina para saber gerenciar sua conta bancária no futuro, organizar seu orçamento e planejar compras, viagens e etc.

A melhor forma de estudar matemática é:
1. Não começar pelos exercícios mais díficeis.

2. Inicie pelos exercícios instrumentais e operacionais. Por exemplo, ao estudar subtração não comece tentando resolver os probleminhas de subtração, mas realize o maior número possível de contas de subtrair com diferentes graus de dificuldade.

3. Mantenha o raciocínio sempre muito organizado. Isso começa pela folha onde você escreve. Tenha sempre uma folha de rascunho e outra para desenvolver o pensamento lógico do exercício.

4. Saiba a tabuada de cor! Atualmente há muitas formas divertidades de aprender a tabuada, aplicativos no celular, jogos no computador. Quanto mais claro estiver a tabuada de 1 a 10, mais rapidamente você resolverá os exercícios.

5. Não deixe números e contas soltas pela folha. Utilize as linhas do caderno, evite colorir, use sempre lápis e deixe a caneta apenas nos resultados.

Ao resolver um problema leia atentamente a questão. Imagine a situação, traga para sua realidade e tente resolvê-lo. Nesta fase o português é muito importante. A interpretação de texto vem antes do raciocínio matemático!

O que diz a pesquisa:
A aversão é tanta que o senso comum aponta: o brasileiro já nasce sem vocação para aprender matemática. O estudo na área começa com professores sem formação específica, que em geral não gostam da disciplina, e acaba com docentes que têm conteúdo para transmitir, mas não didática. No fim do ensino médio, exames confirmam o despreparo.
O resultado do Sistema de Avaliação de Rendimento Escolar do Estado de São Paulo (Saresp), divulgado recentemente, mostrou que 57% dos alunos terminam o ensino médio com rendimento insatisfatório em matemática.
Os números do Programa Internacional de Avaliação de Alunos (PISA), que avaliou o desempenho em matemática de jovens na faixa de 15 anos, colocaram o Brasil na 57.ª posição em um ranking de 65 países. No topo da lista estão China, Cingapura e Hong Kong.
Se a meta é fazer com que a produção de ciência e tecnologia acompanhe o crescimento econômico do Brasil, essa intolerância à matemática precisa ser combatida com urgência, dizem os especialistas.
E a mudança precisa começar na sala aula. Mas não naquela que as crianças frequentam. A reforma deve ocorrer, primeiramente, nas classes das universidades que formam os futuros professores do País.
O desafio começa na formação dos docentes que dão aulas para o ensino fundamental 1. No Brasil, os professores do 1.º ao 5.º ano são polivalentes, isto é, responsáveis pelo conteúdo de todas as disciplinas e, por isso, não têm uma formação específica. Entre eles, poucos estudaram exatas. “Além de ter de dar conta de todas as matérias, muitos trazem a tradição brasileira de não gostar de matemática”, diz Priscila Monteiro, consultora pedagógica para a área de matemática da Fundação Victor Civita.

Para esses, segundo a especialista, falta conhecimento. “Ele sabe ensinar, mas, como não domina o conteúdo, acaba preso às regras. Logo, a criança aprende de forma arbitrária, sem lógica.” Priscila conta que, numa análise de cadernos de estudantes, constatou que, nas questões de matemática, sempre havia a resposta, nunca o processo de resolução. “Desse jeito, o aluno não constrói uma postura investigativa.”
Problema oposto ocorre com os docentes do ciclo 2 do ensino fundamental, que dão aula para estudantes do 6.º ao 9.º ano. “Nesse caso, o professor de matemática é formado na área, tem conteúdo, mas lhe falta didática. Daí, ele se foca naqueles alunos que acompanham a aula e os outros continuam parados, aumenta o vale entre eles,” diz Priscila.

Mudanças. Para tratar de propostas e materiais para o ensino de matemática, o Instituto Alfa e Beto (IAB) promove, em agosto, um seminário internacional sobre o tema, voltado a professores e coordenadores pedagógicos. “Vamos discutir a forma de ensino: o material pedagógico que usamos é adequado? Qual o tempo de aula ideal? A fração tem que ser ensinada em forma de pizza? Decora ou não tabuada?”, elenca João Batista Araujo e Oliveira, presidente do IAB.
Efeito cascata. Formar alunos com gosto pela matemática pode ajudar a resolver até mesmo a carência de professores da disciplina. Nos vestibulares da USP e da Unesp, por exemplo, a concorrência para licenciatura na área é de cerca de dois candidatos por vaga.
No País há 59 mil professores formados em Matemática para 211 mil com formação em Letras. Somado a isso, muitos dos formados passam longe da escola. A baixa remuneração paga aos professores não atrai esses profissionais e muitos optam, por exemplo, pelo trabalho na rede bancária.

Comparação

4 em cada 10 jovens brasileiros de 15 anos não sabem fazer uma operação de multiplicação, habilidade ensinada até o 5º ano do ensino fundamental.
30 mil engenheiros se formam ao ano no Brasil. O número representa 23 engenheiros para cada 10 mil habitantes. Em Israel, o índice chega a 140. No Japão, são 75.

13.388 – Engenharia Genética – Cientistas criam banana transgênica


banana-transgc3aanica
A banana foi desenvolvida pela Universidade de Queensland, na Austrália, e contém 20 vezes mais betacaroteno do que as bananas tradicionais. Essa molécula (naturalmente presente em alimentos como cenoura, espinafre e ervilha) é essencial para o bom funcionameno do corpo humano, pois é transformada pelo organismo em vitamina A. Em crianças pequenas, com menos de cinco anos, a falta de vitamina A é especialmente grave – pois pode prejudicar o sistema imunológico, levando a infecções graves. Acredita-se que, a cada ano, de 600 mil a 750 mil crianças morram por problemas de saúde relacionados à deficiência de vitamina A.
A maioria dos casos acontece na África, em países como Uganda – onde a banana cozida é um elemento central da alimentação. Os cientistas australianos receberam US$ 10 milhões da Fundação Bill & Melina Gates para criar a banana transgênica, que foi batizada de “banana dourada”. Ela é uma banana do tipo Cavendish, o mais comum (inclusive no Brasil) que recebeu genes de outra espécie de banana: a Fe’i, que é nativa de Papua Nova Guiné e conhecida por conter alto teor de betacaroteno.

O resultado do transplante genético foi a banana dourada, que contém muito mais betacaroteno que a Cavendish comum – e, por isso mesmo, é bem mais amarela. Após 12 anos de testes de laboratório e em plantações, os cientistas finalmente chegaram à nova espécie. Ela ainda tem de ser aperfeiçoada, ficando mais resistente e produtiva, para que possa ser cultivada em grande escala na África – o que, segundo os pesquisadores, pode acontecer até 2021. Veja, abaixo, um vídeo da nova banana:

13.387 – O Modelo Atômico de Niels Bohr


Bohr
Com a ideia do átomo consolidada, vários cientistas trabalhavam na tentativa de propor um modelo que explicasse de forma significativa as observações e resultados experimentais conhecidos. Um desses cientistas foi Rutherford que, em seu modelo, explicava o átomo como tendo quase toda sua massa em seu núcleo com carga positiva e que os elétrons com carga negativa giravam ao redor desse núcleo. Porém, pelas leis da física clássica, esse modelo não poderia existir, pois, de acordo com o eletromagnetismo clássico, os elétrons, como qualquer carga em movimento acelerado, ao girar ao redor do núcleo, emitem radiação e, ao emitir essa radiação, eles perdem energia. Assim, os elétrons perderiam toda sua energia e se chocariam com o núcleo.
Como era preciso a criação de um modelo para explicar a estrutura atômica, em 1913, Bohr propôs um modelo atômico. Seu modelo estava baseado em dois postulados:
1º. Os elétrons só podem girar ao redor do núcleo em órbitas circulares, essas órbitas são chamadas de órbitas estacionárias e enquanto eles estão nessas órbitas, não emitem energia.
2º. A energia absorvida ou emitida por um átomo é equivalente ao número inteiro de um quanta.

Cada quanta tem energia igual a h.f, em que f é a frequência da radiação e h é a constante de Planck. Portanto, a variação de energia produzida num átomo será igual à energia emitida ou recebida.
É importante ressaltar que as hipóteses de Niels Bohr tinham como objetivo explicar o comportamento do movimento do elétron ao redor do núcleo do átomo de hidrogênio e que não foi deduzida de teorias já conhecidas. Apesar de conseguir explicar o movimento do elétron no átomo de hidrogênio, o modelo proposto por Bohr não obteve o mesmo resultado quando aplicado a átomos de outros elementos, não sanando o problema da estrutura atômica. É aí que surge a mecânica quântica, para explicar de forma mais satisfatória a estrutura atômica.